Object Oriented
Programming
with
Progress 4GL

Scott Auge

Definition off OOP

= A type of programming in which programmers. define not only: the
data type of a data structure, but also the types: of operations (
functions) that can be applied to the data structure. In this way,
the data structure becomes an opject that includes both data and
functions. In addition, programmers: can create relationships
between one object and another. For example, objects can /inherit
characteristics from other objects.

= One of the principal advantages ofi object-oriented programming
techniques over procedural programming technigues is that they
enable programmers to create modules that do net need to be
changed when a new. type of object isiadded. A programmer can
simply: create a new object that inherits many: of: its features from
existingl ebjects. This makes object-oriented programs, easier to
modify.

Example ofi an object

= | efs examine what would be taken to
make an object representing a door.

TThe Door Object

= \We know that a door has certain states:
= Open
= Closed
= | ocked
= Unlocked

TThe Door Object

= [hese states would be stored in an
attribute of the object, a variable of the
object that Is part ofi the object.

= |s|_ocked = {Yes, No}
= |sSOpen ='{Yes, Noj

TThe Door Object

= \We can do certain things with; the door,
certain actions.

TThe Door Object

= These actions are called methods. These
are the things one can do with the object.
= | ocki()
= UnLock()
= Open()
= Close()

TThe Door Object

= Sometimes what we want to happen: to the
door needs to send some feedback. For
example, trying to open() an already
opened door.
= cErrorlVisg = “Human friendly description”
= [ErrorCode = {Z}

TThe Door Object

= Recap of variables associated with the
object.
= |[ErrorCode
= cErrorlVisg
= |s| ocked
= |SOpen

TThe Door Object

= Recap of the methods available
= GetError()
= | ocki()
= Unlock()
= Open()
= Close()

TThe Door Object

= \What it we want to make two door
objects? Do we need to make two sets of
variaples?

Implementing ani ebject

= An object in the 4GL needs to be defined
In a procedure file.

= [he object's attributes would be local
variables, to the file.

= [he object's methods would be internal
procedures to the file.

= [0 make an “instance” of the object, one
wouldlrun the file “persistantly.”

Implementing ani ebject

= Object oriented files should begin with
obj_ so that programmers know. off the
bat the file is object oriented.

= obj_log.p Is an object oriented log file
management system.

Implementing ani ebject

= [he logging object Is stored in a file
= obj_leg.p
= [he log management object has some
attributes associated to It:
= ['he file name ofi the file It manages
= [The error messaging subsystem.
= A variable to determine If the file open

Implementing ani ebject

= [he logging object has some methods available

fo It:

= GetError()

= GetlogFileName()
Init()
InitAppend()
Destroy()
DeWirtLogFile()
DoErasel.ogFile()
DoCopyl_ogFile()
DoCloseFile()

Implementing ani ebject

= [he log management object has some
‘private” methods available to it. Private
methods are methods that should only be
called by the object it's sel:

= [fhese should be pre-pended with prv so
programmers know. they: are private. Progress
does not enforce privacy.

= pVASSIgNErTor()

= Helps to ease management ofi the errors, firom| ether:
procedures.

Implementing ani ebject

= | ocal variables to the object (attributes),
will need their own Set*() and Get*()
methods because the 4GL does not allow

external programs to access them
directly.

Creating an instance of the object

= Now that an object is defined, how do we
use It?

Create an instance of ani object

= Objects need to be referred through Progress 4GL
handles. The code below says we are expecting to work
with two objects:

/* Object instance handles */

DEEINE VARTABILE hobjlog Systemloghile AS HANDLE NO-UNDO.
DEEINE VARTABILE hobjlog ProgrammerlLogiile ASH HANDLE NO-UNDO.

Create an instance of ani object.

= Once we have handles to manage our
Instances, we go ahead and make

Instances:

/% Create twe instances of the Logging obiject */

RUNI obj 1og.p PERSISTENT SET hobjlog SystemlLogkile.
RUNI obj| 1og.p PERSISTENT SET hobjlog Programmerloghkile.

Create an instance of ani object

= [he 4Gl does not let us call the
constructor automatically like some
languages do (C++ for example.) We
need to call those separately:

/* Call their constructors */

RUN TnitAppend IN hobjlog SystembogEile ("/tmp/systemlogfile. tx).
RUN InitAppend IN hobjlog Programmerlogiile ('"/tmp/programmerlogfile. txt™) .

Create an instance of ani object

= Once aniobject has been allocated and
it's constructor has been called, one can
begin working Iit's methods:

/* Call into their "activity" methods */

RUN DoWrtlLogEile IN hobjlog SystemLogkile ("This should be in system log file.").

RUN DoWrtlLogEile IN hobjlog ProgrammerLogkile ("This should be in programmer log

file. "),

Creating an object instance

= One ofi the good things about objects Is
that they can know about themselves.
Here Is a method that returns the log file

the object Is writing to:

/* Display the log files these objects are using */

RUNI GetLogkileName IN hobjloeg Systemlogbile (OUTPUL cl) .
RUNI GetLogbileName IN hobjlog Programmeriogiile (OUTPUL c2)) .

disp cl c2.

Creating an object instance

= \When you: are finished with an object, you
should call it's “"destructor.” Note you
need to delete it's persistence handle.

/* Call their destructors */

RUNI Destroy IN hebjlog SystemlLogkile.
DELETE WIDGET hobjlog Systemloghile.

RUN Destroy IN hobijlog Programmerlogiile.
DELETE WIDGCET hobjlog Programmerloghile:.

Passingl Objects around

= One can pass objects to other routines: by
passing their handles to them.

= [Handles can be converted into strings

with the S

RING() function, and returned

to a handle type with the WIDGE -
HANDLE() function.

Some things o' think about

= Objectfying LT2K
= An Application Object
= SetApplicant(hperson_main, “Main™)
= A Person Object

= SetName(FirstName, LastName)
= A Property Object
= GetFees()

Questions?

