Progress E-Zine Issue 40

The Progress Electronic Magazine
An Amduus™ |nformation Works, Inc. Publication

This document may be freely shared with others without modification. Subscribe for free here:

http://www.amduus.com/online/dev/ezine/EZineHome.html

You can find an archive of these E-Zines here: http://amduus.com/OpenSrc/FreePublications/

Page 1 of 22

Progress E-Zine Issue 40

Table of Contents

PUBIISN AN SUBSCITDE.......ceee e e 4
What dOESN'T WOIK! ... e ae e e enes 7
MOreto Play WITH! ..o e 9

Implementing A Stack With Persistent ProCedUIES............ccooeiereeierinienee e 10

PUDIISNING INFOIMBLION: ..ot e e 22

Other Progress Publications AVailabI€: ..o 22

Article SUDMISSION INFOIMELION:cooeiiiiieee e 22

© 2005 Scott Auge, Amduusm™ Information Works, Inc., and contributors.

The information contained in this document represents the current view of the community or Amduus on the
issues discussed as of the date of publication. Because the community or Amduus must respond to
changing market and technological conditions, it should not be interpreted to be a commitment on the part
of the community or Amduus, and the community or Amduus cannot guarantee the accuracy of any
information presented . This paper is for informational purposes only. The community or Amduus MAKES
NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. Product and company names
mentioned herein may be the trademarks of their respective owners.

Page 2 of 22

Progress E-Zine Issue 40

Publisher's Statement

| have been hearing about this “publish” and “subscribe” feature of the 4GL so | figured
it was time to figure out what is going on with that!

After learning some about this, | think this feature of the language may be one of THE
most important changes yet. Imagine having other portions of your application become
aware of something happening in part of the program without a RUN statement.

Imagine never having to call other routines to update ancillary data structures or perform
ancillary procedures. One simply issues an “event” and the other parts of the application
catch that event and do their thing too.

Also included in this issue is part one of basic data structures with the 4GL. | will show
how to implement a stack in an object oriented fashion with persistent procedures. This
will hopefully aid with learning the use of persistent procedures and how they can be
used as objects. For example, with the code available, you can create two or more
instances of a persistent procedure and in effect have n stacks completely separate from
each other.

Following issues of the E-Zine will include code for queues and a list object. This list
object is so powerful you might never need the use of ENTRY() ever again!

Some readers have also noticed that the E-Zine is becoming less frequent. There are
two reasons for that. One is that | have been moving more and more into the
PHP/MySQL/PostgreSQL world for Amduus. Reason two is, since | have become a W2
employee of a company, my free time to income ratio is just a tad bit different. As a
contractor | use to be able to work less time for more money — leaving extra time for the
E-Zine and learning new programming knowledge with Progress.

That said — you all out there can feel free to send some articles into the E-Zine too!
Others have done it!

Anyhow, lets get on with the fun!

Scott Auge
sauge at amduus dot com.

Page 3 of 22

Progress E-Zine Issue 40

Publish And Subscribe
By Scott Auge

Having a little bit of free time and access to John Sadds excellent books available here:
http://www.progress.com/products/documentation/index.ssp | picked up on the ideas of
“publish and subscribe.” Often we hear how there are no books at the local Barnes &
Noble for learning Progress development'. Progress has heard our cry and has made
a slew of books available on Progress 4GL development.

1AP:
PAChETIEEER' i CT SN - CaSTSNN+ C oM

Logfile analyzing Visual Printing CASE-Extension for the Project management
system checking and Enhanced Reports Data Dictionary compiling, analyzing
@ usable with Windows or UNIX ® uses Windows printer drivers @ view Progress-DB structures @ compiles project file lists
@ check activity of NS/DB/WS/httpd @ data processing with 4GL @ create/update DBs directly @ includes compiler server
@ analyze logfiles of NS/DB/WS @ incl. layout designer (VFD) ® reengineer Progress-DBs @ also compiles in char-mode

@ check drive space, space in DB ® stores layouts DB or file based @ read/write Progress df-files @ uses different Progress vers.

@ execute self defined scripts ® no runtime licence cost ® compare/maintain versions @ compiles for different OS

@ analyze self defined logfiles ® supports bmp/jpg/wmf images @ incl. DB Content Viewer @ contains xref-analyze frontend

@ get notified by e-mail, http ® embedding rtf-texts (font,...) @ incl. Open Report Interface ® shows db structure & content

@ or screen output @ generates xml output (xslfo) @ autogenerates references @ keeps track of project errors
® generates pdf-files (email) @ print resizable ER-Diagrams

® supports WebSpeed /-Client ® report-, structure- or ERD view

I
o
IAP g >> ITooLs ‘FQRIPRDGRESS

IAP GmbH « Moerkenstrasse 9 » D-22767 Hamburg » Germany
Tel +48 40 3068 03 -0+ Fax +49 40 3068 03 - 10
email: info@tools4progress.com Information and free test at www.tools4progr .com

But back to subject... publish and subscribe (pub/sub) is an event throwing and catching
mechanism. It is similar in idea to catching a menu click or a button click — only it allows
far more flexibility.

That flexibility is, you are allowed to name and define your own events, and the catcher
code for that event can be spread out amongst multiple procedures.

As an example, lets say you are working on a sales oriented program. When a sale is
made, you need to do somethings like remove items from inventory, perhaps make a

1This is one of the reasons why | started the E-Zine — as a means to learn from others
and others to learn what | have.

Page 4 of 22

Progress E-Zine Issue 40

purchase order for items back ordered, create a pull slip for the warehouse, and run a
credit card routine to bill their account.

In the past, a developer would have to tie all those pieces together with a RUN
statement and know what things need to be run. With an event, things can be more
“loosely coupled” as Progress will know what to do.

This code below is the skeleton of throwing an event described above. Of course, we
are not going to try and implement all this functionallity — just enough to show the
convenience of using events to make it happen.

RUN sub_i nv. p PERSI STENT. /* Events for inventory nanagenment */
RUN sub_war ehouse. p PERSI STENT. /* Events for warehouse */

RUN sub_po. p PERSI STENT. /* Events for purchase orders */

RUN sub_cc. p PERSI STENT. /* Events for credit card */

/* ON FI NAL SALE BUTTON CLI CKED | N SOVE W NDOW */
PUBLI SH " Sal evade" .

What we aim to do is show how catching a “click” on some “final sale” button could be
implemented to do all these things. An event called “SaleMade” is thrown and we aim to
see that event captured in the sub_*.p programs listed above.

Let's see what happens when we run that program?:

2 Thiswindow may look alittle funky, because | use an Apple OS X machine to ssh into a Linux
computer that actually is running Progress.

Page 5 of 22

Progress E-Zine Issue 40

r@ O sauge@amduus?: /home/sauge/code/progress fevent ’

E

Inwentory

Furchas

Credit Card

Frocedure complete. Pr pace bar to continue.

Wow! Obviously some stuff happened when we threw that event called “SaleMade” into
the works. Let's see what the programs looked like that made that happen:

sub_cc.p

SUBSCRIBE TO "SaleMade" ANYWHERE RUN-PROCEDURE "a" NO-ERROR.
PROCEDURE A:

disp "Credit Card" FORMAT "x(20)".
END.

sub_inv.p
SUBSCRIBE TO "SaleMade" ANYWHERE RUN-PROCEDURE "a" NO-ERROR.

PROCEDURE A:
disp "Inventory" FORMAT "x(20)".

Page 6 of 22

Progress E-Zine Issue 40

END.
sub_po.p

sub_warehouse.p

You might notice | used the same routine name, “A,” to catch the events with in my
SUBSCRIBE statement. You do not need to match the same routine name in all the
SUBSCRIBE statements.

What doesn't work!

| tried this program:

Page 7 of 22

Progress E-Zine Issue 40

Where subscribers.p reads as:

SUBSCRIBE TO "Event A" ANYWHERE RUN-PROCEDURE "a" NO-ERROR.
SUBSCRIBE TO "Event A" ANYWHERE RUN-PROCEDURE "b" NO-ERROR.

PROCEDURE A:
disp "In A" with frame a.

END.
PROCEDURE B:

disp "In B" with frame b.
END.

And received this:

r@ a0 sauge@amduus2: /home/sauge /code/progressfevent

dure complete. Pr ce bar to continue.

Page 8 of 22

Progress E-Zine Issue 40

We got two “In A” messages because the persistent procedure subscriber.p was
instanced twice. So each instance will catch the same type of event.

As you can see, we didn't get an “In B” message — so it appears, once a persistent
procedure has caught an event and executed it, it doesn't use the other SUBSCRIBE
statement at all to reach PROCEDURE B, even though no compile error is thrown.

Just a little bit of behavior to be aware of.

More to play with!

The PUBLISH statement can even include parameters! So the example code above
might be adapted to include an INPUT parameter containing the sales order number — or
some means to explain to the catching routines.

The SUBSCRIBE statement can actually be limited to a particular handle of a procedure
too. This way if an event is thrown in one procedure, you can prevent it from being
caught from other procedures. If you need to do this, | would recommend looking at
sorting out the multiple events into different names.

Also, you do not need to put the SUBSCRIBE statements in a different persistent
procedure — they can be used in the same source file as the PUBLISH statement. | just
would think that would turn into a big mess so | recommend better modularity than what
that would allow you.

John Sadd's freely available book mentioned in the link above has more example code
showing the use of events to make other things happen in the same window form for
input. It shows it's use in a way that is more microcosm to a window than with the idea
of a “business event” as | have shown in this article.

Scott Auge is the founder of Amduus information Works. He has been working with
Progress technologies since Version 6. He works with UNIX platforms dealing with
integration and web based applications.

Advertisement

Service Express is golden and ready for use. Below find Service Express configured for
an apartment management system, though it is flexible enough to be used by help desks
in nearly any kind of industry for smaller businesses.

SAVE MONEY! SAVE STRESS!
« Allow your external customers to manage and create their tickets.

Page 9 of 22

Progress E-Zine Issue 40

006 Tte - it =Internal users manage all
" 0:' J Hd} J | % motpat pameeus. comyapptiveinioges rLising pheTsessionii gonghipa oaa7 11250 | (D sewen | S *Q . tICketS
= M Wame Dkaokmirks
| B colors [wmages [pvaserse ClawrCacha CharAl GliFEnh Femt- Tonts | [RaalUh] | % rramar v % Wy Baw (_-.Web based —use Internet
Do AV b [Explorer, Mozilla, Safari, or
— k—d Opera.
Listing Pew Ticket Beger Semch Profiis Rogoul bl Aboul
Tichet Lising -Easy to use, easy to
... T .. . WL - @weynderstand.
L] TAR040792 00906 Mo i Front Gats stuck open .
TAROADITINOA0T - How 1 Dusire s bilke rack -Conflgurable S’[atuseS
(workflow)
104 Amduss Information Weorks, Inc ‘Configurable priorities

-Configurable HTML areas for
your look and feel.

- For more information
contact Scott Auge at
sauge@amduus.com or see

O S L@ e = Y

http://amduus.com/serviceexpress

Service Express is available in three ways:

1. As an Application Service from Amduus Information Works, Inc.
2. As a leased application on an Amduus provided machine.
3. As as licensed program for use on your machine.

Implementing A Stack With Persistent Procedures
By Scott Auge

When we go to school to learn computer science or mathematics, we often take that first
Comp 101 course studying data structures. If you don't know about data structures, |
recommend you hit amazon
http://www.amazon.com/exec/obidos/ASIN/0262032937/qid=1106878827 /sr=2-

1/ref=pd ka b 2 1/104-9886269-2431926 for “Introduction to Algorithms” or of course,
Volume | of “The Art Of Computer Programming.”

A stack is pretty simple to understand — one pushes values on top of each other, much
like putting words on pieces of paper and then putting the papers on top of each other.
This act of putting papers down on top of each other is called “pushing”. Each paper
represents an entry in the stack. Then to remove the papers, one takes off the top paper

Page 10 of 22

Progress E-Zine Issue 40

first and works their way down. This action is called “popping.” Stacks are also called
LIFO which stands for “Last In First Out.”

This may seem pretty simple, and it is! It is also the base structure that more complex
structures and algorithms might use. Lets take a look at a program that runs the stack.

tst_obj_stack.p

{obj mgr.i NEW

DEF VAR cTenp AS CHARACTER NO- UNDO.

DEF VAR cErr Code AS CHARACTER NO- UNDQO.
DEF VAR cErr Msg AS CHARACTER NO- UNDO.
DEF VAR cErr Met hod AS CHARACTER NO- UNDO.

QUTPUT TO st ack. | og.
RUN OvVAdd (" Test", "obj_stack.p").
RUN Push I N OMGH(" Test"
RUN Push I N OMCGH(" Test"

) (I
) (I
RUN Push | N OVGH("Test") (I NPUT "
RUN Push I N OVGH("Test") (I

=
S
oo g
SN

RUN Pop IN OMGH(" Test") (QOUTPUT cTenp) .
MESSACGE "“cTenp = " cTenp.
RUN Pop IN OMGH(" Test") (QOUTPUT cTenp) .
MESSACE "cTenmp = " cTenp.
RUN Pop IN OMGH("Test") (OUTPUT cTenp) .
MESSACE "cTenmp = " cTenp.
RUN Pop IN OMGH("Test") (QUTPUT cTenp) .
MESSACGE "cTenmp = " cTenp.
RUN Pop IN OMGH(" Test") (OUTPUT cTenp) .
MESSACE "cTenp = " cTenp.
RUN Pop IN OMGH("Test") (OUTPUT cTenp) .
MESSACE "“cTenp = " cTenp.

RUN GetError IN OMGH("Test") (OUTPUT cErrCode, OUTPUT cErrMsg, OUTPUT
cErr Met hod) .

MESSAGE cEr r Code.
MESSAGE cErr Msg.
MESSAGE cErr Met hod.

RUN OvDel ("Test").

Page 11 of 22

Progress E-Zine

Issue 40

QUTPUT CLOSE.

OneStep Charge

Premier Credit Card Processing for the 4GL

¢ |ntegrationin 10 minutes

¢ Realtime authorizations in 2 seconds
* Pure Progress

* Only Requires V9 or higher

* Fully-documented API

* NO drop files

¢ NO plain -text hazards

Nova, Paymentech, NDC, FHMS

literally thousands per month

866.461.TRIB

¢ Certified with all major processorssuch as VITAL,

s Tri8-sponsored merchant accounts (optional) can save

\E’;\nnuhnprf
http://OneStepCharge.com \ ”“ ey
oscinfo@onestepcharge.com \ ¥

First we define some
variables that aid us with
any errors the stack needs
to inform us of. There are
few errors associated with a
stack, so it is easy to
determine what kinds of
errors one might encounter.
We do that running the
GetError routine made
available by the base object
template.

Next we use the object
manager's OMAdd to
instance the object “Test”
who is composed of the
code and data storage from
obj_stack.p. Remember the
data storage for each
instance of the object is
separate from any other's.
So if you instance two or
more objects, they all need
unigue names between
them and any data you
Push or Pop from one
instance has no effect on
the data in the other
instances. Think of them as
two piles of paper or stacks
of plates.

The object manager's OMAdd procedure will also call into the Init procedure of the stack

object automatically. More on this later on.

Once we have an object available to us, we start running the Push procedure available
in the object to add our data into it. Notice we identify which object we wish to
manipulate with the IN OMGH (“Test”) phrase of the statement. Push the following

data in the following order: a b c d.

Page 12 of 22

Progress E-Zine

Issue 40

Remember that a stack is Last In First Out.
So the last item in is a “d” so that should
be the first item out of the stack when we
“pop” an item from the stack. The act of
popping an item also removes the item
from data storage. This makes the last — 1
item available for popping. You can see
the results in stack.log below:

stack.log

cTenp
cTenp
cTenp
cTenp
cTenp
cTenp
100
Pop On Enpty Stack
Pop

NV T O Q

You can see that some of our return
values from the stack are the unknown
denoted by the “?” symbol. The program
is designed to return a ? when there is
nothing more to pop off the stack.

One may think this is good programming
style — but it is not. To truly set up an error
detection system, one should have code
specifically for that. After all, what if one of
the values you wanted to push and pop off
the stack was an unknown? Then you
would not know if the stack was empty or if
the valid value came off of it.

To aid in determining if something went wrong with the actions on the stack, one can
check the GetError routine made available by the base object template. We have an
error code of 100 with an error message “Pop On Empty Stack” to aid the programmer

with error conditions that have happened during an operation.

In our implementation of a stack, we use the template for an object available at

http://amduus.com/4glwiki/index.php?pagename=Template%20for%200bject%
200riented%20programming as our base code.

We then added the following routines:

Push — allows an implementor to put a value onto the stack

Page 13 of 22

Progress E-Zine Issue 40

Pop — allows an implementor to remove a value from the stack
IsEmpty — allows the implementor to query the object if it is storing anything

Count — allows the implementor to query the object for how many items remain on the
stack.

We also added the following possible error conditions that might occur:

100 — Pop On Empty Stack

Because really this is the only error that could happen on a stack.

There is also the base object's error code 001 which states GetAttr was called for an
attribute that wasn't available. This is related to the object and not really to the stack
code.

Below is the code for implementing the stack. It really is quite simple — we use a temp
table to store our entries and the Pop and Push routines to put and remove entries from
the table. This is where a database 4GL language really shines as in 3GL languages
one usually needs to do memory manipulations. In the 4GL they become table
manipulations.

obj_stack.p

/***/

[* This programis neant to run as an object. */
/[* It is a sinple programto denonstrate: */
[* -- "Private" attributes available to it */
[* -- "Public" nethods avail abl e to other prograns. */
/* -- A good tenplate for future objects with Constructor and */
[* Destructor routines. */

/***/

{objngr.i} /* May be deleted if not using object manager */

FUNCTI ON cGet Attr RETURNS CHARACTER (I NPUT cAttrNane AS CHARACTER) FORWARD.
[% e Begin Attributes List ---------------------- */
/* Exanple attribute specific to the object */

/* Used for object nmanagenent */

DEFI NE VARI ABLE cgObj Nane as character NO UNDO
B End Attributes List ---------------------o */
R L Begin Methods List ---------------------- */

Page 14 of 22

Progress E-Zine Issue 40

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

[* This is the "destructor" for the routine. It should be called be */

/* fore deleting the handle to the instance of this object. */
/***/

PROCEDURE Dest r oy:

END.

/***/

/[* |f other "constructors" are needed, they can be put in. This one */

/* is called Init. Unlike C++, it will need to be run manually. */
[* If you are using QbjMyr.i, it will be run automatically. */
/[* If you need to nake other Inits, place them here and nanme begi nning */
[* "Init" : InitByRowl D or |nitBySal esO der Nunber. */

/***/

PROCEDURE I ni t:
DEFI NE | NPUT PARAMETER cName AS CHARACTER NO- UNDO.
ASSI GN cgOhj Name = cNane.
RUN Set Error |IN THI S- PROCEDURE ("000", "lnit").

END.

/***/

[* Al procedures need a way to describe their errors back to the cal- */
[* ler. */
/***/

PROCEDURE Get Error:

DEFI NE OUTPUT PARAMETER cErr Code AS CHARACTER NO- UNDO.
DEFI NE OUTPUT PARAMETER cErrMsg AS CHARACTER NO- UNDG.
DEFI NE OUTPUT PARAMETER cErr Met hod AS CHARACTER NO- UNDO.

ASSI GN
cErrCode = cCGetAttr("ErrCode")
CErrMsg = cGetAttr("ErrMsg")

cErrMethod = cGetAttr("ErrMethod").

END. /* PROCEDURE Get Error */

/***/

/* This is the central point where internal procedures can comunicate */
/* their problens to the procedure as a whol e. */
/[* It's main purpose is to convert codes into human readable formin */
[* cgObj ErrMsg as well as popul ate the procedures globally avail abl e */

* *
/[* vars. /
/***/

PROCEDURE Set Error:

Page 15 of 22

Progress E-Zine

Issue 40

DEFI NE | NPUT PARAMETER cError Code AS CHARACTER NO- UNDO.
DEFI NE | NPUT PARAMETER cMet hodNanme AS CHARACTER NO- UNDO.

CASE cErr or Code:

WHEN " 000" THEN DO
RUN Set Attr | N TH S- PROCEDURE (" Err Code", cError Code).
RUN Set Attr | N TH S- PROCEDURE ("ErrMsg", "No Error").
RUN Set Attr | N TH S- PROCEDURE (" Err Met hod", cMethodNane).
END.

VHEN " 001" THEN DG
RUN Set Attr I N THI S- PROCEDURE (" Err Code", cError Code).
RUN Set Attr I N THI S- PROCEDURE ("ErrMsg", "No Such Attribute").
RUN Set Attr IN TH S- PROCEDURE ("ErrMet hod", cMethodNane).

END.

WHEN " 100" THEN DO
RUN Set Attr | N TH S- PROCEDURE (" Err Code", cError Code).
RUN SetAttr | N THI S- PROCEDURE ("ErrMsg", "Pop On Enpty Stack").
RUN Set Attr | N TH S- PROCEDURE (" Err Met hod", cMethodNane).

END.

OTHERW SE DG

RUN Set Attr I N THI S- PROCEDURE (" Err Code", cError Code).

RUN Set Attr I N THI S- PROCEDURE ("ErrMsg", ?).

RUN Set Attr IN TH S- PROCEDURE ("ErrMet hod", cMethodNane).
END.

END. /* CASE */

END. /* PROCEDURE Set Error */

/***/

/* These are nethods to performactivities on the data controlled by */
/* the object. */
[* Attributes are actually stored in a tenp-table, that way we can add */
/* new ones easily, and not need to create nore Set/Get routines for */
[* for each attribute. The bad news is, we need to cast to and from */
/* character for the data to pass back and fourth. |If this is a pron- */

/* lem then create sonme Set/ Get routines for those val ues. */
/***/

DEFI NE TEMP- TABLE tt Attri butes
FI ELD AttrNanme AS CHARACTER
FI ELD AttrVal ue AS CHARACTER
| NDEX keyl AttrNanme ASCENDI NG

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

/* We don't make this a function, because we need to FORWARD decl are */
/* in the code using this object, and this name is going to be pret- */

[* ty popul ar causing conflict with other objects with a GetAttr. */
/***/

Page 16 of 22

Progress E-Zine Issue 40

PROCEDURE Get Attr:

DEFI NE | NPUT PARAMETER cNane AS CHARACTER NO- UNDG.
DEFI NE OQUTPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

FIND tt Attri butes NO LOCK
WHERE tt Attri butes. AttrNanme = cNane
NO- ERROR.

I F NOT AVAI LABLE ttAttri butes THEN DO

/***/

/* Note that sonetines it is OK for an attribute to be ? */
/* so be sure to renenber to check the error if the at- */

/* tribute wasn't found or really is ?. Sonetines it */
/* it works out it does not matter, sonetines it does */
/* matter. */

/***/

RUN Set Error |IN THI S- PROCEDURE ("001", "GetAttr").
ASSI GN cVal ue = 2.
RETURN.

END. /* |IF NOT AVAI LABLE ttAttri butes */

ASSI GN cValue = ttAttributes. AttrVal ue.

END. /* PROCEDURE Cet Attr */

/***/

/* However it IS useful to have a GetAttr function for use in TH S- */
/* PROCEDURE within the internal procedures avail able. */

/***/

FUNCTI ON cGet Attr RETURNS CHARACTER (I NPUT cAttrNane AS CHARACTER):
DEFI NE VARI ABLE cAttrVal ue AS CHARACTER NO- UNDO.
RUN Get Attr I N TH S- PROCEDURE (| NPUT cAttrName, OUTPUT cAttr Val ue).
RETURN cAt t r Val ue.

END. /* FUNCTION cCetAttr() */

/***/

/* If the attribute already exists, we overwite, not error out... */

/***/

PROCEDURE Set At tr:

DEFI NE | NPUT PARAMETER cNane AS CHARACTER NO- UNDG.
DEFI NE | NPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

FIND tt Attri butes NO LOCK
WHERE tt Attri butes. AttrNanme = cNane

Page 17 of 22

Progress E-Zine

Issue 40

NO- ERROR.
I F NOT AVAI LABLE ttAttributes THEN CREATE ttAttri butes.

ASSIGN ttAttri butes. AttrNanme = cNane
ttAttributes. AttrVal ue = cVal ue.

/* Some attributes are dependent on other attributes, handle those */
/* here. =/

RUN Dependent Attr (cNanme, cVal ue).

END. /* PROCEDURE Set Attr */

/****'k*'k*******'k*********'k*****'k*'k*******'k******************************/

[* Some attributes are dependent on the values of other attributes. */
/[* W keep themin sync with this code here. */

/***/

PROCEDURE Dependent At tr:

DEFI NE | NPUT PARAMETER cName AS CHARACTER NO- UNDOG.
DEFI NE | NPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

END. /* PROCEDURE Dependent Attr */

/****'k*'k*******'k*********'k*****'k*'k*******'k******************************/

/[* This is a way to quickly transfer record information into attri- */
/* butes. The attribute nane is tabl enane_fi el dnane. */
[* Exanpl e Use: */
/* FIND FI RST Person NO LOCK. */
/* ASSI GN hBuf fer = BUFFER Per son: Handl e. */
/* RUN Record2Attr (hBuffer). */

/***/

PROCEDURE Recor d2Attr:

DEFI NE | NPUT PARAMETER hBuf fer AS HANDLE NO- UNDO.

DEFI NE VARI ABLE hFi el d AS HANDLE NO- UNDOQ.
DEFI NE VARI ABLE i AS | NTEGER NO- UNDQO.
DO i =1 TO hBuffer: Num Fi el ds:

ASSI GN hField = hBuffer:Buffer-Field(i).

RUN Set Attr | N THI S- PROCEDURE (hBuffer:Name + " _" + hFi el d: Nane,
hFi el d: Stri ng- Val ue) .
END.
END.

/***/

[* Scan the attributes table for entries beginning with the table name */

Page 18 of 22

Progress E-Zine Issue 40

/* and apply their values to the field naned in the second part of the */

[* attribute nane. */
/* Note this doesn't manage nultiple buffers of the sane nanme very */
[* well. If you need n records fromthe sanme table, nane the buffers */
[* seperately. */

/***/

PROCEDURE Attr2Recor d:
DEFI NE | NPUT PARAMETER hBuf f er AS HANDLE NO- UNDO.

DEFI NE VARI ABLE hFi el d AS HANDLE NO- UNDG.
DEFI NE VARI ABLE cFi el dNane AS CHARACTER NO- UNDO.

FOR EACH tt Attri butes NO LOCK
WHERE ttAttributes. AttrNane BEG NS hBuffer: Name + " _":

/***/

[* Luckily, it appears that buffer-value types automatically... */
/* 1t will puke on bad data sent - such as text for an int, etc. */

/***/

ASSI GN hfield = hBuffer:Buffer-Fiel d_ ENTRY(2, ttAttributes. AttrNane, " "))
hfield: Buffer-Value = ttAttributes. AttrVal ue.

END. /* FOR EACH ttAttri butes */

END. /* PROCEDURE Attr2Record */

/***/

[* Useful for debugging. Note we output to a file so we don't get any */
/* wrong display device type errors when the r-code is shared between */
/* different interfaces. */

/***/

PROCEDURE At tr Debug:
DEFI NE | NPUT PARAMETER cFi | eName AS CHARACTER NO- UNDO.
OUTPUT TO VALUE(cFi | eNane) .
FOR EACH tt Attri butes NO LOCK:
PUT UNFORVATTED ttAttributes. AttrNane "=" ttAttributes. AttrVal ue SKIP.
END. /* FOR EACH ttAttributes */
OUTPUT CLOSE.

END. /* PROCEDURE AttrDebug */

/***/

/* Clear out all attributes that have been set. It is better to set */

/* an attribute to ? and code for that; but sonetimes one needs this. */
/***/

Page 19 of 22

Progress E-Zine Issue 40

PROCEDURE Cl ear Attr:
FOR EACH ttAttri butes:
DELETE ttAttri butes.
END. /* FOR EACH ttAttributes */

END. /* PROCEDURE C ear Attr */

/***/

/* This is a special set of routines that allow the object's user to */
/* reach the tables directly. Convenient for ASSICGNS and the |ike so */

/* one is not continously calling a Set* routine for each and every */
[* field. */
/* WARNI NG This CAN BE ABUSED. */
/* WARNI NG Sets of Like records nay be a problem */
[* ATTN: Buffers can go both ways. This can be good. This can be */
[* bad. */
/***/
/*

PROCEDURE Get Buf f er s:
DEFI NE PARAMETER BUFFER Your Record FOR Your Tabl e.
BUFFER- COPY (bj Buf f er Your Record.

END. /* PROCEDURE GetBuffers */

PROCEDURE Set Buf f er s:
DEFI NE PARAMETER BUFFER Your Record FOR Your Tabl e.

BUFFER- COPY Your Record Obj Buf fer.

END.

*/

T Begin stacking code -------------------- */
/[* Here we are using an index to keep the entries ordered */

[* This tenp table is local to this instance only - nultiple stacks */

/* can be used. */

DEFI NE TEMP- TABLE TheSt ack
FI ELD Order AS | NTEGER
FI ELD AnEntry AS CHARACTER
| NDEX pukey Order.
PROCEDURE Push:
DEF | NPUT PARAMETER cEntry AS CHARACTER NO- UNDO.

DEF VAR i Entry AS | NTEGER NO- UNDQO.

Page 20 of 22

Progress E-Zine Issue 40

FIND LAST TheSt ack NO- LOCK NO- ERROR

I F NOT AVAI LABLE TheStack THEN ASSIGN i Entry = 1.
ELSE ASSI GN i Entry = TheStack. Order + 1.

CREATE TheSt ack.
ASSI GN TheSt ack. AnEntry = cEntry
TheSt ack. Order = i Entry.
END. /* PROCEDURE Push */
PROCEDURE Pop:
DEF QUTPUT PARAVETER cEntry AS CHARACTER NO- UNDO.
FI ND LAST TheSt ack NO- LOCK NO- ERROR
| F AVAI LABLE TheSt ack THEN DO
ASSI GN cEntry = TheStack. AnEntry.
DELETE TheSt ack.
END.
ELSE DO
ASSI GN cEntry = ?.
RUN Set Error ("100", "Pop").
END.
END. /* PROCEDURE Pop */
PROCEDURE | sEnpt y:
DEF QUTPUT PARAMETER | Return AS LOG CAL NO- UNDO.
FI ND FI RST TheStack NO LOCK NO ERROR.
ASSI GN | Return = AVAI LABLE TheSt ack.
END. /* PROCEDURE |sEnpty */
PROCEDURE Count :
DEF QUTPUT PARAMETER i Count AS | NTEGER NO- UNDO.
ASSI GN i Count = 0.
FOR EACH TheSt ack NO LOCK:
ASSI GN i Count = i Count + 1.
END.
END. /* PROCEDURE Count */

I e End Methods List ------------------------ */

Page 21 of 22

Progress E-Zine Issue 40

Scott Auge is the founder of Amduus information Works. He has been working with
Progress technologies since Version 6. He works with UNIX platforms dealing with
integration and web based applications.

Publishing Information:

Scott Auge publishes this document. | can be reached at
sauge@amduus.com.

Amduus Information Works, Inc. assists in the publication of this document by
providing an internet connection and web site for redistribution:

Amduus Information Works, Inc.
1818 Briarwood
Flint, Ml 48507

http://www.amduus.com

Other Progress Publications Available:

This document focuses on the programming of Progress applications. If you wish to
read more business oriented articles about Progress, be sure to see the Profile’s
magazine put out by Progress software http://www.progress.com/profiles/

There are other documents/links available at http://www.peg.com .

There is a web ring of sites associated with Progress programming and consultants
available at http://i.webring.com/hub?ring=prodev&id=38&hub .

White Star Software publishes a commercial document called “Progressions.” It is
simular to this document but with different content. More information can be found
at http://wss.com/. White Star also publishes Progress Programming books!

Article Submission Information:

Please submit your article in OpenOffice® format or as text. Please include a little bit
about yourself for the “About the Author” paragraph.

Looking for technical articles, marketing Progress articles, articles about books
relevant to programming/software industry, white papers, etc.

Send your articles to sauge@amduus.com! Thanks!

3 OpenOfficeis afreely available Office Suite for Windows, Apple, and *NIX based operating systems.
Y ou can download it at http://openoffice.org. Thisdocument is edited on OpenOffice.

Page 22 of 22

