Progress E-Zine Issue 41

The Progress Electronic Magazine
An Amduus™ |nformation Works, Inc. Publication

This document may be freely shared with others without modification. Subscribe for free here:
http://www.amduus.com/online/dev/ezine/EZineHome.html

You can find an archive of these E-Zines here: http://amduus.com/OpenSrc/FreePublications/

Page 1 of 24

Progress E-Zine Issue 41

Table of Contents

Password Validation/Generation ODJECL............ooerirerinireneeeee e 4

CPASSWOIT: @OC.....eeeeieee ettt e e a e 8
Implementing A Queue With Persistent ProCedures............ccoovveeiinieneeiie e 12
PUBIISNING INFOIMBLION:.....c.eiitiiiieeie e 23
Other Progress Publications AVailabI€:............ccociiiiiiiinie s 23
Article SUDMISSION INFOIMELION:.........coouiiireeeee e e 23

© 2005 Scott Auge, Amduusm™ Information Works, Inc., and contributors.

The information contained in this document represents the current view of the community or Amduus on the
issues discussed as of the date of publication. Because the community or Amduus must respond to
changing market and technological conditions, it should not be interpreted to be a commitment on the part
of the community or Amduus, and the community or Amduus cannot guarantee the accuracy of any
information presented . This paper is for informational purposes only. The community or Amduus MAKES
NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. Product and company names
mentioned herein may be the trademarks of their respective owners.

Page 2 of 24

Progress E-Zine Issue 41

Publisher's Statement

In this issue | continue with basic data structures in the 4GL. The last issue showed how
to simply implement a stack. Some people wondered what such a thing might be useful
for. | can tell you one right now — the collection of error messages and the order they
were encountered! It would be a good place to store validation errors or the like.

The data structure in this issue is the queue. This is the First In — First Out data
structure. It has a lot of useful behaviors for Operations Research and is one of the
“fundamental” data structures.

| have put the code out for the stack, queue, and upcoming list objects at
http://amduus.com/OpenSrc/SrcLib/OOP in list.zip, stack.zip and queue.zip.

Also included in this issue is a password validation and generation scheme. With
Sarbanes-Oxley Act becoming more prominent in the business world, passwords are
coming under more scrutiny. This object can help you validate a given password as
matching a set of rules. It can also help one generate a password to match a set of
rules too. It also is located in the above mentioned link under obj_passwd.zip.

Anyhow, lets get on with the fun!

Scott Auge
sauge at amduus dot com

Page 3 of 24

Progress E-Zine Issue 41

Password Validation/Generation Object
By Scott Auge

With increased scrutiny on security via the Sarbane-Oxley Act/SAS70', developers are
finding themselves needing to write algorithms to aid with more secure passwords for
applications.

This is accomplished in the article with obj_passwd.p.
We validate on the following attributes of the password:

« Minimum Length

« Minimum Count of Number Characters

« Minimum Count of Alpha Characters

« Minimum Count of Punctuation Characters

The object will default these values upon it's initialization. Check out the routine Init to
learn and update the values to your needs. One can also change the defaults by setting
the attributes via the SetAttr procedure in the object.

We have the following possible errors on a given password:
+ Not achieving the minimum length

« Not achieving the minimum number of letters

+ Not achieving the minimum number of numbers

+ Not achieving the minimum number of punctuation marks

The error codes can be found in the SetError procedure of obj_passwd.p.

One can also generate passwords with the object through the GeneratePassword
procedure.

1 SAS/0isan audit procedure of service organizations. If you are outsourcing, you may want to explore
thisalittle more. If you are providing services to another company, you may want to become familiar
withitincaseitiscalled for.

Page 4 of 24

Progress E-Zine Issue 41

You can download the code from here:
http://amduus.com/OpenSrc/SrcLib/OOP/obj passwd.zip

Here is an example calling into the object. In general, | use the object manager
(objmgr.i). It basically lets me add and subtract persistent procedures and to give them
names instead of handles. See a previous E-Zine for more information about this object.

From there, it is pretty simple — we offer up a password to ValidatePassword() and use
GetError to determine if an error occurred during validation or not. We are always
looking for error code 000 — if another comes up, then the password does not meet the
standards as specified in the object.

tst_obj_passwd.p

Page 5 of 24

Progress E-Zine

Page 6 of 24

Progress E-Zine Issue 41

You can actually change the standards in the object by calling the SetAttr() procedure in
the object. See the Init() procedure for the names and defaults for the attributes
available in this object.

Page 7 of 24

Progress E-Zine Issue 41

tst_obj_password.log

Page 8 of 24

Progress E-Zine Issue 41

Password From Argument: 09omdkrf'x
Password From Attribute: 09omdkrf'x
cErrCode: 000

cErrMsg: No Error

cErrMethod: GeneratePassword

Scott Auge is the founder of Amduus information Works. He has been working with
Progress technologies since Version 6. He works with UNIX platforms dealing with
integration and web based applications.

Page 9 of 24

Progress E-Zine Issue 41

Donations

Do you find something useful in the E-Zine now and then? Do you think it holds value
for your education in the 4GL and to learn what is out there?

It does take money to produce this electronic magazine. Sure | can cut corners by not
needing paper, ink, or postage — but bandwidth still costs x amount of dollars every
month.

Even with Linux server, hardware does cost money — and the server is five years old.
It's due for an upgrade.

Yes, | use OpenOffice.org to edit the document on, but throw in the laptop and that is a
few more dollars.

Throw in a developer's Progress license — well... we all know how much that puppy is! It
sure is useful for writing code with! | would like to get on version 10.

All of the above is going to cost about $10,000.00 this year. Bet you didn't know it costs
so much for a free publication!

We all know there are not that many publications for Progress based technology. You
can help yourself, and others, by donating to “the cause.”

Your Name:

Organization:
___$5.00 ___$10.00 ___$%$20.00
Consider this address good until April 2005:
Scott Auge
222 East Riverside #302

Austin, TX 78704
United States of America

Thanks for your support!
Scott

Page 10 of 24

Progress E-Zine Issue 41

Advertisement

Service Express Is Now Open Source under the GPL license!

Service Express is golden and ready for use. Below find Service Express configured for
an apartment management system, though it is flexible enough to be used by help desks
in nearly any kind of industry for smaller businesses.

SAVE MONEY! SAVE STRESS!

‘ana Ticket Listing - hbozilis ==}
e o Ve] ey <4, i) “Allow your external customers
g e to manage and create their
we e otickets.

| [Colons [mager: [fvaScrm Ciear Cache Clear Al T

Monarch Apartment Living T

mll il “Internal users manage all
= v lickets.

Listing [ew Ticket Bepod Search Profiie fLogout Hislgy
dr - ‘Web based — use Internet
TR : oty Explorer, Mozilla, Safari, or

ey Baue Humbee Statiuy Eriofily Tuk Company
1 wiewed
Tao40T93 00006 How i Front Gate stuck opsn

2004070100007 Mow 1 Desire s bike rack
\ Opera.

gt PLING PAg T SENSH

WA Th Feet~ Fonte | Esalua

-Easy to use, easy to
004 Amduse Informaton Warks, Inc understand

-Configurable statuses
(workflow)

-Configurable priorities

«Configurable HTML areas for
your look and feel.

« For more information
contact Scott Auge at
EE LA ——=s-Sauge @amduus.com or see

htto://arhduus.com/serviceexoress

Service Express is available in three ways:

1. As an Application Service from Amduus Information Works, Inc.
2. As a leased application on an Amduus provided machine.
3. As a GPL Open Source licensed program for use on your machine (Free!!!)

Page 11 of 24

Progress E-Zine Issue 41

Implementing A Queue With Persistent Procedures
By Scott Auge

When we go to school to learn computer science or mathematics, we often take that first
Comp 101 course studying data structures. If you don't know about data structures, |
recommend you hit amazon
http://www.amazon.com/exec/obidos/ASIN/0262032937/qid=1106878827/sr=2-

1/ref=pd ka b 2 1/104-9886269-2431926 for “Introduction to Algorithms” or of course,
Volume | of “The Art Of Computer Programming.”

A queue is pretty simple to understand — it works very much like a line of people at the
bank or grocery store. Queues are also called FIFO which stands for “First In First Out.”

This may seem pretty simple, and it is! It is also the base structure that more complex
structures and algorithms one might use. Some more complex uses might be in
operations research. For example — simulating the activity at your retail store to find the
optimum number of lines to have open. Each line in the store is a queue and you can
learn from your existing data average lengths of time for each customer and what
number of customers are out there for given time periods. Or you can simulate the flow
of parts around an assembly system in a factory — each work cell or work station would
service a queue of parts coming into it.

This queue code is actually implemented in an object oriented way. We instance the
object via the PERSISTENT SET hQueue grammar. If you want to have multiple
queues one would RUN the object multiple times. It is also better to use the objmgr.i
code found with the code to dynamically start up queues and “name” them.

Lets take a look at a program that runs the queue.

tst_obj_queue.p

[* Test queue without object nanager code */

DEFI NE VARI ABLE hQueue AS HANDLE NO- UNDO.
DEFI NE VARI ABLE cVal ue AS CHARACTER NO- UNDQ.

DEFI NE VARI ABLE cErr Code AS CHARACTER NO- UNDO.
DEFI NE VARI ABLE cErrMsg AS CHARACTER NO- UNDO.
DEFI NE VARI ABLE cErr Meth AS CHARACTER NO- UNDO.
QUTPUT TO /t np/ queue. | og.

RUN obj queue. p PERSI STENT SET hQueue.

Page 12 of 24

Progress E-Zine Issue 41

RUN Init IN hQueue ("NoName").

RUN Enqueue | N hQueue ("1
RUN Enqueue | N hQueue ("2
RUN Enqueue I N hQueue ("3
RUN Enqueue | N hQueue ("4"

).
).
).
).

RUN DunmpQueue | N hQueue ("/tnp/sauge").

RUN Dequeue | N hQueue (QUTPUT cVal ue).
MESSAGE cVal ue.
PAUSE.

RUN Dequeue | N hQueue (QUTPUT cVal ue).
MESSAGE cVal ue.
PAUSE.

RUN Dequeue | N hQueue (QUTPUT cVal ue).
MESSAGE cVal ue.
PAUSE.

RUN Dequeue | N hQueue (QUTPUT cVal ue).
MESSAGE cVal ue.
PAUSE.

/* Do an extra one to test errors */

RUN Dequeue | N hQueue (QUTPUT cVal ue).

MESSAGE cVal ue.

RUN GetError |IN hQueue (OUTPUT cErrCode, OUTPUT cErr Mg, OUTPUT
CErrMet h).

MESSAGE cErrCode cErrMsg cErrMeth.

[* dean up */
DELETE PROCEDURE hQueue.

QUTPUT CLOSE.

First we define some variables that aid us with any errors the queue needs to inform us
of. There are few errors associated with a queue, so it is easy to determine what kinds
of errors one might encounter. We do that running the GetError routine made available
by the base object template.

Next we run the object creating an instance in memory accessible via the hQueue
handle. Remember the data storage for each instance of the object is separate from any
other's. So if you instance two or more objects, they all need unique names between
them and any data you Enqueue or Dequeue from one instance has no effect on the
data in the other instances. Think of them as two lines at the grocery store.

Page 13 of 24

Progress E-Zine

Issue 41

Once we have an object available to us,
we start running the Enqueue procedure
available in the object to add our data into
it. Notice we identify which object we wish
to manipulate with the IN hQueue phrase
of the statement. We enqueue the
following data in the following order: 1 2 3
4,

Remember that a queue is First In First
Out. So unlike the stack we talked about
in issue 40, the first item out will be 1 as
that was the first item put into the queue.
The act of dequeuing an item also
removes the item from data storage. This
makes the last — 1 item(s) available for
dequeuing. You can see the results in
queue.log below:

queue.log

[~/ code/ progress/ obj ects]$ cat /
t np/ queue. | og

NP WN PR

100 Dequeue on enpty queue Dequeue

You can see that some of our return
values from the stack are the unknown
denoted by the “?” symbol. The program
is designed to return a ? when there is
nothing more to dequeue off the queue.

One may think this is good programming style — but it is not. To truly set up an error
detection system, one should have code specifically for that. After all, what if one of the
values you wanted to enqueue and dequeue off the queue was an unknown? Then you

would not know if the queue was empty or if the valid value came off of it.

To aid in determining if something went wrong with the actions on the queue, one can
check the GetError routine made available by the base object template. We have an

error code of 100 with an error message “Dequeue on empty Queue” to aid the
programmer with error conditions that have happened during an operation.

In our implementation of a queue, we use the template for an object available at

http://amduus.com/4glwiki/index.php?pagename=Template%20for%200bject%
200riented%20programming as our base code.

Page 14 of 24

Progress E-Zine Issue 41

We then added the following routines:

Enqueue — allows an implementor to put a value onto the queue.
Dequeue — allows an implementor to remove a value from the queue
IsEmpty — allows the implementor to query the object if it is storing anything

Count — allows the implementor to query the object for how many items remain on the
stack.

If you read the code below, you will also find some additional routines that could be
helpful.

We also added the following possible error conditions that might occur:

100 — Dequeue on empty Queue

Because really this is the only error that could happen on a queue.

There is also the base object's error code 001 which states GetAttr was called for an
attribute that wasn't available. This is related to the object and not really to the queue
code.

Below is the code for implementing the queue?. It really is quite simple — we use a temp
table to store our entries and the Enqueue and Dequeue routines to put and remove
entries from the table. This is where a database 4GL language really shines as in 3GL
languages one usually needs to do memory manipulations. In the 4GL they become
table manipulations.

obj_queue.p

/***/

/* This programis nmeant to run as an object. */
/* It is a sinple programto denonstrate: */
[* -- "Private" attributes available to it */
/* -- "Public" nethods avail able to other prograns. */
[* -- A good tenplate for future objects with Constructor and */
[* Destructor routines. */

/***/

FUNCTI ON cGet Attr RETURNS CHARACTER (I NPUT cAttrNane AS CHARACTER) FORWARD.

R L e R T T T Begin Attributes List ---------------------- */

2Remember this code is download-able also, so you do not need to cut and paste from this
document.

Page 15 of 24

Progress E-Zine Issue 41

[* Exanple attribute specific to the object */

/* Used for object managenent */

DEFI NE VARI ABLE cgObj Name as character NO UNDO.

A End Attributes List ---------------------. */
L T R Begin Methods List ---------------------- */
/***/
/* This is the "destructor" for the routine. It should be called be */
/* fore deleting the handle to the instance of this object. */

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

PROCEDURE Dest r oy:

END.

/***/

/* If other "constructors" are needed, they can be put in. This one */

/* is called Init. Unlike C++, it will need to be run nmanually. */
/* |f you are using QojMyr.i, it will be run autonmatically. */
/[* |f you need to nake other Inits, place them here and nane begi nning */
[* "Init" : InitByRow D or |nitBySal esOrderNunber. */

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

PROCEDURE | ni t:
DEFI NE | NPUT PARAMETER cName AS CHARACTER NO- UNDO.
ASSI GN cgCbj Nane = cNane.
RUN Set Error I N TH S- PROCEDURE ("000", "Init").
RUN Cl ear Queue | N THI S- PROCEDURE.

END.

/***/

[* Al procedures need a way to describe their errors back to the cal- */
[* ler. */
/***/

PROCEDURE Get Error:

DEFI NE OUTPUT PARAMETER cErr Code AS CHARACTER NO- UNDO.
DEFI NE OUTPUT PARAMETER cErrMsg AS CHARACTER NO- UNDOG.
DEFI NE OUTPUT PARAMETER cErr Met hod AS CHARACTER NO- UNDO.

ASSI GN
cErrCode = cGetAttr("ErrCode")
CErrMsg = cGetAttr("ErrMsg")

cErrMethod = cGetAttr("ErrMethod").

Page 16 of 24

Progress E-Zine Issue 41

END. /* PROCEDURE Cet Error */

/****'k*'k*******'k*********'k*****'k*'k*******'k******************************/

[* This is the central point where internal procedures can comunicate */
[* their problens to the procedure as a whol e. */
[* It's main purpose is to convert codes into human readable formin */
[* cgObj ErrMsg as well as popul ate the procedures globally avail abl e */

* *
/* vars. /
/***/

PROCEDURE Set Error:

DEFI NE | NPUT PARAMETER cError Code AS CHARACTER NO- UNDO.
DEFI NE | NPUT PARAMETER cMet hodNanme AS CHARACTER NO- UNDO.

CASE cErr or Code:

WHEN " 000" THEN DO
RUN Set Attr | N TH S- PROCEDURE (" Err Code", cError Code).
RUN Set Attr I N THI S- PROCEDURE ("ErrMsg", "No Error").
RUN Set Attr I N THI S- PROCEDURE (" Err Met hod", cMet hodNane) .
END.

WHEN " 100" THEN DO
RUN Set Attr | N TH S- PROCEDURE (" Err Code", cError Code).
RUN Set Attr I N TH S- PROCEDURE ("ErrMsg", "Dequeue on enpty queue").
RUN Set Attr | N TH S- PROCEDURE (" ErrMet hod", cMethodNane).

END.

OTHERW SE DG
RUN Set Attr | N TH S- PROCEDURE (" Err Code", cError Code).
RUN Set Attr I N THI S- PROCEDURE ("ErrMsg", ?).
RUN Set Attr I N THI S- PROCEDURE (" Err Met hod", cMet hodNane).
END.

END. /* CASE */

END. /* PROCEDURE Set Error */

/***/

[* These are nmethods to performactivities on the data control |l ed by */
/* the object. */
[* Attributes are actually stored in a tenp-table, that way we can add */
/* new ones easily, and not need to create nore Set/Get routines for =
/* for each attribute. The bad news is, we need to cast to and from */
/* character for the data to pass back and fourth. |If this is a pron- */
/* lem then create sone Set/Get routines for those val ues. */

/***/

DEFI NE TEMP- TABLE ttAttri butes
FI ELD Attr Name AS CHARACTER
FI ELD AttrVal ue AS CHARACTER
| NDEX keyl AttrNanme ASCENDI NG

/***/

Page 17 of 24

Progress E-Zine Issue 41

/* W don't nmake this a function, because we need to FORWARD decl are */
/* in the code using this object, and this nanme is going to be pret- */
[* ty popul ar causing conflict with other objects with a GetAttr. */

/***/

PROCEDURE Get Attr:

DEFI NE | NPUT PARAMETER cNane AS CHARACTER NO- UNDO.
DEFI NE OUTPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

FIND tt Attri butes NO LOCK
WHERE ttAttri butes. AttrName = cNane
NO- ERROR.

| F NOT AVAI LABLE ttAttributes THEN DO

/***/

/* Note that sonetines it is OK for an attribute to be ? */
/* so be sure to renenber to check the error if the at- */

/* tribute wasn't found or really is ?. Sonetines it */
/* it works out it does not matter, sonetines it does =/
/* matter. S

/***/

RUN Set Error I N THI S- PROCEDURE ("001", "GetAttr").
ASSI GN cVal ue = 2.
RETURN.

END. /* |F NOT AVAI LABLE ttAttributes */

ASSI GN cValue = ttAttributes. AttrVal ue.

END. /* PROCEDURE Get Attr */

/***/

/* However it IS useful to have a GetAttr function for use in TH S S
/* PROCEDURE wi thin the internal procedures avail able. */

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

FUNCTI ON cGet Attr RETURNS CHARACTER (| NPUT cAttrNanme AS CHARACTER):
DEFI NE VARI ABLE cAttrVal ue AS CHARACTER NO- UNDO
RUN Get Attr IN TH S- PROCEDURE (I NPUT cAttrName, OUTPUT cAttr Val ue).
RETURN cAt tr Val ue.

END. /* FUNCTION cGet Attr() */

/'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k************************/

[* If the attribute already exists, we overwite, not error out... */
/***/

PROCEDURE Set Attr:

Page 18 of 24

Progress E-Zine

Issue 41

DEFI NE | NPUT PARAMETER cName AS CHARACTER NO- UNDO.
DEFI NE | NPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

FIND tt Attri butes NO LOCK

WHERE tt Attri butes. AttrNane = cNane

NO- ERROR.

I F NOT AVAI LABLE ttAttri butes THEN CREATE ttAttri butes.

ASSICGN ttAttri butes. AttrNane = cNane
ttAttributes. AttrVal ue = cVval ue.

/* Some attributes are dependent on other attributes, handl e those */
/* here. */

RUN Dependent Attr (cName, cVal ue).

END. /* PROCEDURE Set Attr */

/***/

/* Sone attributes are dependent on the val ues of other attributes. */
/* W keep themin sync with this code here. */

/***/

PROCEDURE Dependent Attr:

DEFI NE | NPUT PARAMETER cNane AS CHARACTER NO- UNDG.
DEFI NE | NPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.

END. /* PROCEDURE Dependent Attr */

/***/

/* This is a way to quickly transfer record information into attri - */
/* butes. The attribute name is tabl enane_fi el dnane. */
[* Exanpl e Use: */
/* FIND FI RST Person NO- LOCK. */
[* ASS|I GN hBuffer = BUFFER Per son: Handl e. */
/* RUN Record2Attr (hBuffer). */

/****'k*'k*******'k*********'k*****'k*'k*******'k******************************/

PROCEDURE Record2Attr:

DEFI NE | NPUT PARAMETER hBuf fer AS HANDLE NO- UNDO.

DEFI NE VARI ABLE hFi el d AS HANDLE NO- UNDOQ.
DEFI NE VARI ABLE i AS | NTEGER NO- UNDQO.
DO i = 1 TO hBuffer: Num Fi el ds:

ASSI GN hField = hBuffer:Buffer-Field(i).

RUN Set Attr I N THI S- PROCEDURE (hBuffer: Nane + "_" + hFi el d: Nang,
hFi el d: Stri ng- Val ue) .

END.

Page 19 of 24

Progress E-Zine Issue 41

END.

/***/

[* Scan the attributes table for entries beginning with the table name */
/* and apply their values to the field nanmed in the second part of the */

[* attribute nane. */
/* Note this doesn't nmanage nultiple buffers of the sanme nane very */
/* well. |If you need n records fromthe sane table, nanme the buffers */
/* seperately. */

/***/

PROCEDURE Attr2Record:
DEFI NE | NPUT PARAMETER hBuf fer AS HANDLE NO- UNDO.

DEFI NE VARI ABLE hFi el d AS HANDLE NO- UNDO
DEFI NE VARI ABLE cFi el dName AS CHARACTER NO- UNDO.

FOR EACH tt Attri butes NO LOCK
WHERE ttAttri butes. AttrNane BEG NS hBuffer: Nane + " _":

/***/

/* Luckily, it appears that buffer-value types automatically... */
/* It will puke on bad data sent - such as text for an int, etc. */

/'k*'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k**********************/

ASSI GN hfield = hBuffer:Buffer-Fiel d_ ENTRY(2, ttAttributes. AttrNane, " "))
hfield: Buffer-Value = ttAttributes. AttrVal ue.

END. /* FOR EACH ttAttri butes */
END. /* PROCEDURE Attr2Record */

/***/

[* Useful for debugging. Note we output to a file so we don't get any */
/* wrong display device type errors when the r-code is shared between */
[* different interfaces. */

/***/

PROCEDURE At t r Debug:
DEFI NE | NPUT PARAMETER cFi | eName AS CHARACTER NO- UNDO.
OUTPUT TO VALUE(cFi | eNane) .
FOR EACH ttAttri butes NO LOCK:
PUT UNFORMATTED ttAttributes. AttrNane "=" ttAttributes. AttrVal ue SKIP.
END. /* FOR EACH ttAttributes */

CQUTPUT CLCSE.

Page 20 of 24

Progress E-Zine Issue 41

END. /* PROCEDURE AttrDebug */

/****'k*'k*******'k*********'k*****'k*'k*******'k******************************/

/* Clear out all attributes that have been set. It is better to set */

/* an attribute to ? and code for that; but sonmeti mes one needs this. */
/***/

PROCEDURE Cl ear Attr:
FOR EACH ttAttri butes:
DELETE ttAttri butes.
END. /* FOR EACH ttAttributes */
END. /* PROCEDURE Cl ear Attr */
[% e Chject SpecifiC -----------c-ccmonnnn- */
DEFI NE TEMP- TABLE Queue
FI ELD Order AS | NTEGER
FI ELD Data AS CHARACTER
| NDEX pukey Order ASCENDI NG
PROCEDURE Enqueue:
DEFI NE | NPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.
DEFI NE VARI ABLE i Last Order AS | NTEGER NO- UNDO.
DEFI NE BUFFER Cur _Queue FOR Queue.
FI ND LAST Queue NO LOCK NO ERROR

| F AVAI LABLE Queue THEN ASSI GN i Last Order = Queue. Order + 1.
ELSE ASSI GN i Last Order = 1.

CREATE Cur _Queue.

ASSI GN Cur _Queue. Order = iLast O der
Cur _Queue. Data = cVal ue.

END. /* PROCEDURE Enqueue */
PROCEDURE Dequeue:
DEFI NE QUTPUT PARAMETER cVal ue AS CHARACTER NO- UNDO.
DEFI NE BUFFER Cur _Queue FOR Queue.
FIND FI RST Cur _Queue EXCLUSI VE- LOCK NO ERROR
| F AVAI LABLE Cur _Queue THEN DO

ASSI CN cVal ue = Cur_Queue. Dat a.
DELETE Cur Queue.

Page 21 of 24

Progress E-Zine Issue 41

END.
ELSE DG
ASSI GN cVal ue = 2.
RUN Set Error I N THI S- PROCEDURE (" 100", "Dequeue").
END.
END. /* PROCEDURE Dequeue */
PROCEDURE Count :
DEFI NE QUTPUT PARAMETER i Count AS | NTEGER NO- UNDO.
DEFI NE BUFFER Cur _Queue FOR Queue.
ASSI GN i Count = 0.
FOR EACH Cur Queue NO- LOCK:
ASSI GN i Count = i Count + 1.
END.
END. /* PROCEDURE Count */
PROCEDURE | sEnpty:
DEFI NE OQUTPUT PARAMETER | | sEnpty AS LOd CAL NO- UNDO.
DEFI NE BUFFER Cur Queue FOR Queue.
FIND FI RST Cur _Queue NO LOCK NO- ERROR
| | sEmpty = AVAI LABLE Cur _Queue.
END. /* PROCEDURE |sEnpty */
PROCEDURE DunpQueue:
DEFI NE | NPUT PARAMETER cFi | eName AS CHARACTER NO- UNDO.
OUTPUT TO VALUE (cFil eNane) .
FOR EACH Queue NO LOCK:
EXPORT Queue.
END.
OUTPUT CLOCSE.
END. /* PROCEDURE DunpQueue */
PROCEDURE O ear Queue:

FOR EACH Queue EXCLUSI VE- LOCK:

Page 22 of 24

Progress E-Zine Issue 41

DELETE Queue.
END.

END. /* PROCEDURE C ear Queue */

A L R T e End Methods List ------------------------ */

Scott Auge is the founder of Amduus information Works. He has been working with
Progress technologies since Version 6. He works with UNIX platforms dealing with
integration and web based applications.

Publishing Information:

Scott Auge publishes this document. | can be reached at
sauge@amduus.com.

Amduus Information Works, Inc. assists in the publication of this document by
providing an internet connection and web site for redistribution:

Amduus Information Works, Inc.
1818 Briarwood

Flint, Ml 48507
http://www.amduus.com

Other Progress Publications Available:

This document focuses on the programming of Progress applications. If you wish to
read more business oriented articles about Progress, be sure to see the Profile’s

magazine put out by Progress software http://www.progress.com/profiles/
There are other documents/links available at http://www.peg.com .

There is a web ring of sites associated with Progress programming and consultants
available at http://i.webring.com/hub?ring=prodev&id=38&hub .

White Star Software publishes a commercial document called “Progressions.” It is
simular to this document but with different content. More information can be found
at http://wss.com/. White Star also publishes Progress Programming books!

Article Submission Information:

Please submit your article in OpenOffice® format or as text. Please include a little bit
about yourself for the “About the Author” paragraph.

Looking for technical articles, marketing Progress articles, articles about books
relevant to programming/software industry, white papers, etc.

3 OpenOfficeis afreely available Office Suite for Windows, Apple, and *NIX based operating systems.
Y ou can download it at http://openoffice.org. Thisdocument is edited on OpenOffice.

Page 23 of 24

Progress E-Zine Issue 41

Send your articles to sauge@amduus.com! Thanks!

Page 24 of 24

