
Progress E-Zine Issue 17

 Page 1 of 16

The Progress Electronic Magazine

In this issue:

Publisher’s Statement: .. 2
Coding Article: Using vi features to increase programmer productivity part II 3

Function 1: Copy and Paste... 3
Function 2: Move block indentation to right/left... 5
Function 3: Comment and Un-comment ... 6

Coding Article: Web based menuing system Part I ... 7
What we are trying to achieve:.. 7
The table structure ... 7
The Menu.html program.. 8
The GenTree.p Program.. 9
The FindDepth.p program ... 10
The GenTreeHTML.p program... 11
License... 13

Publishing Information:.. 13
Article Submission Information:.. 14

Did you sign up to receive this E-Zine? Send email to sauge@amduus.com to subscribe
or fill out the forms at http://www.amduus.com/online/dev/ezine/EZineHome.html ! It’s

free! (Though donations are certainly welcome – whatever you feel is fair!)

Though intended for users of the software tools provided by Progress Software Corporation, this document is
NOT a product of Progress Software Corporation.

mailto:scott_auge@yahoo.com
http://www.amduus.com/online/dev/ezine/EZineHome.html

Progress E-Zine Issue 17

 Page 2 of 16

Publisher’s Statement:

Once again we have a reader supplied article! Here are additional tricks one can use to make vi
that much more powerful to quickly manipulate source code. The cutting and pasting section
let’s one set up multiple “buffers” that can be shared between users of vi (aren’t multi-user
systems neat?) for code sharing, as well as indentation techniques.

Other exciting news is that this ezine is going out to over 800 subscribers! Holy Moly! I
remember when I thought it was a milestone to reach 200 people! As you read this issue, know
that over 800 programmers are reading along with you, in over 15 countries, in 500+ Progress
using organizations. So if you ever feel like you are the lone Progress programmer – know that
you are not! And feel free to pass this around! We want people to know how to use Progress – it
is in all of our best interests to see valuable and useful programs in Progress reach the
marketplace.

Please keep Amduus Information Works, Inc. in mind when you have a project coming up!
There is more than just one guy associated with this corporation! Amduus is already influencing
the programming practices of hundreds of programmers in hundreds of companies – can’t be all
that bad!

I always try to post useful code in this E-Zine and I can’t think of anything more useful than a
menu system. There are plenty of menu organizations out there, and this code gives the ol’
college try at a tree based menu structure. In part one, we look at the tables used, a few pictures
of what we are attempting to do, and the code to render the menu. In part two, we will look at the
maintenance program used to conveniently edit the menu structure.

The code works in both Webspeed and Blue Diamond. It should be cross platform compatible
working on not only UNIX, but also Windows based operating systems.

As with a lot of code developed at Amduus, this code is being open sourced under the Berkley
License which means -- long enough you give credit to Amduus Information Works, Inc. and
Scott Auge – you are free to use it any way you wish. (But you must also include the don’t sue
Amduus legalese.)

To your success,
Scott Auge
Founder, Amduus Information Works, Inc.
sauge@amduus.com

mailto:sauge@amduus.com

Progress E-Zine Issue 17

 Page 3 of 16

Coding Article: Using vi features to increase programmer productivity part II

Written by Sam Paakki

This is a follow up article to Scott Auge’s last coding article that introduced the ex abbreviate
command, which can help programmers save on key strokes when coding.

Let’s get things straight from the get go. Vi rocks! As you see, I’m
a huge fan of this editor, despite initially hating being force to
learn it by my first employer. Side note: I was also forced into to
learning how to type at the same time. Learning both at the same
time wasn’t an easy charter, but it was well worth the effort.
These two skills allow me to get an idea into a file super-fast!

It can be hard to learn how truly powerful vi is by simply reading the man pages, as you really
have to read the man pages for vi, ex, ed, regexp, etc; and we all know how hard reading man
pages can be. I was fortunate enough to be around other vi power-users who constantly amazed
me with their abilities to enter and modify code. There are many good books on vi out there.
Start with a small (i.e. thin) one and persist.

In this article I will describe some of the editing features and functions that I simply can’t do
without and how I perform them with vi.

Function 1: Copy and Paste

Your telnet emulator may support copy and paste functionality, but this is a the LCD (lowest
common denominator) method I use that works everywhere I go.

Firstly you’ll need to add two ex commands to your editing environment defaults. All this means
is you vi your .exrc file in your home directory to add a few lines. This only needs to be done
once.

First add a key mapping using the ex map command for our Yank (copy) function by adding the
following line to the end of your $HOME/.exrc file.

map ^Y :’a,.w!/tmp/

To enter the ^Y character above, you’ll need to press <Ctrl>-<v>, which will display a ‘^’ and
then you press <Ctrl>-<y> to replace the ‘^’ with the single ‘^Y’ character. You can see that

Reach over 700 programmers
and companies.

Your ad could be here!

Advertise in the E-Zine for
$10.00 per issue!

Progress E-Zine Issue 17

 Page 4 of 16

this is in fact a single character by moving the cursor over it and you’ll notice (if you’ve done it
correctly) that the cursor will not go on top of the ‘^’ any longer.

In vi you can escape any keyboard character input by pressing <Ctrl>-<v>, when in INSERT
MODE, followed by the key you want to escape. This is very handy for editing protermcap files,
should the need arise.

Next we need to add a key mapping for our Paste function by adding the following line to the end
of your $HOME/.exrc file.

map ^P :r /tmp/

N.B., editing environment defaults are read on start-up of vi, so whenever you modify your
$HOME/.exrc file, you’ll need to save it and then restart any vi sessions you are already running
in order to access the changes.

Now, when you’re in vi, in command mode, you’ll be able to use the new yank and paste
functions by pressing <Ctrl>-<y> and <Ctrl>-<p> respectively.

To yank, position the cursor to the first line that you want to copy down from and then press the
<m> key, and then press the <a>. This marks the current line as line a and it can be address with
‘a. Now move the cursor down to the last line that you want to copy down to. Press <Ctrl>-
<y> and you will see ‘:’a,.w!/tmp/’ on the bottom line with the cursor flashing after the
trailing forward slash character. Now enter a filename of your choice followed by <Enter>. I
use the file ‘s0’ out of habit and if I need more than one file at a time I simply increment the
trailing integer (e.g., s1, s2, etc). This creates a file in /tmp with the name that you entered
containing the selected lines of text.

Now you can move to another line or even vi another file, before you paste the yanked text back
in. Once you’ve repositioned the cursor to the line before the point where you want to paste the
text back into, press <Ctrl>-<p> and you will see ‘:r /tmp/’ on the bottom line with the
cursor flashing after the trailing forward slash character. Now, type the filename of a file that
you’ve already yanked to and then press <Enter>. The yanked text should now have been
placed back into your current file.

All that these 2 mappings for <Ctrl>-<y> and <Ctrl>-<p> do is save typing a few keys for the
ex write and read commands. You can just type the ‘:’a,.w!/tmp/’ or ‘:r /tmp/’
manually if you really want to.

Progress E-Zine Issue 17

 Page 5 of 16

Amduus Information Works, Inc. is
ASPing it's forum software. With
a simple hyperlink or frame, your
site, static or dynamic, can link

into our message board software.

Contact sauge@amduus.com for
more information!

Function 2: Move block indentation to right/left

Some times I find it necessary to indent or un-indent a block of code when I add or remove
blocking statements. In vi you can move the current line one shift-width to the right by pressing
the greater-than key twice (ie, ‘>>’) and conversely to the left by pressing the less-than key twice
(ie, ‘<<’).

It is also possible to use the ex commands > and < which shift groups of lines to the right and
left. Once again, I set up a couple of mappings to automate this. Add the following two lines to
the end of your editing environment defaults file (ie, $HOME/.exrc).

map ^[OP :'a,.<^M

map ^[OQ :'a,.>^M

In this case, the ^[OP above is the sequence of keys my telnet emulator sends when I press my
<F1> key and the ^[OQ above is a <F2>. N.B., my emulator is emulating a vt220. Also the ^M
above is entered by pressing <Ctrl>-<v> followed by <Enter>.

Therefore when you enter these two lines
you should press <Ctrl>-<v> followed by
<F1> or <F2> as appropriate so that you
escape the key sequence.

Now in vi you can put your cursor on the
first line of the group of lines that you want
to shift and then press <m> followed by <a>.
Do you see a pattern emerging? I always
mark the top line as a and then I move down
to the last line of the group and perform the function by addressing this group of lines with
‘:’a,.’. Think of this as saying from line a to the current line do … as the comma means to and
the period means the current line.

This makes it possible to mark your first line, then move to your last line of the group and press
either <F1> or <F2> repeatedly to shift the block right or left. NOTE: if you change your
terminal type, you will need to change the mapping to look for the new sequence being sent for
these function keys. However, I find that once I’ve done the initial set up of these mappings, I
rarely change my terminal type or emulator.

Progress E-Zine Issue 17

 Page 6 of 16

Function 3: Comment and Un-comment

These two functions are quite complex, but very useful. I won’t try to explain them fully, but you
should give them a try.

Again, you need to add two mappings to your .exrc file. We will use <F3> to comment out code
and <F4> to remove comments (sort of). This is how they appear in my .exrc file: -

map ^[OR mbo^[i */^[:'a^MO^[i/*^M *^M*^[j:.,'bs/^/ * /^M:'a-2^M

map ^[OS :'a,.s/^...//^M

Here are the keystrokes that you need to enter for the first line: -

map<Space><Ctrl-v><F3><Space>mbo<Ctrl-v><Esc>i<Space>*/
<Ctrl-v><Esc>:’a<Ctrl-v><Enter><Shift-O><Ctrl-v><Esc>
i/*<Ctrl-v><Enter><Space>*<Ctrl-v><Enter>*<Ctrl-v><Esc>
j:.,’bs/^/<Space>*<Space>/<Ctrl-v><Enter>:’a-2<Ctrl-v><Enter>

And here are the keystrokes for the second line: -

map<Space><Ctrl-v><F4><Space>:’a,.s/^...//<Ctrl-v><Enter>

This commands removes the first 3 characters (whatever they are) from the beginning of the
addressed lines. You have to manually delete the comment start and end marks yourself.

Give them a try by using the common theme of mark a on the first line, and the move to the last
line, followed by your newly mapped function key. If you have any problems, you can email me
directly at smp@varacom.com.au with your questions.

Once you understand regular expressions, you can really do some amazing search and replaces
with vi (or sed). I’ll save my tricks and tips in this area for another day. Happy coding.

About the author: Sam Paakki is the founder of Varacom Pty Ltd, which is based in
Brisbane Australia. He has been programming in the Progress environment since 1990.
His works have included the extension of Progress-based core systems and their
integration to 3rd party systems for SME businesses, along with performance tuning and
disaster recovery planning for these systems. He is also the president of QPUG (Qld
Progress User Group). smp@varacom.com.au

mailto:smp@varacom.com.au
http://www.varacom.com.au/
mailto:smp@varacom.com.au?subject=Re: seen in EZine

Progress E-Zine Issue 17

 Page 7 of 16

Coding Article: Web based menuing system Part I

Written by Scott Auge sauge@amduus.com

Often when one is creating web applications, a web based menu system comes in handy to help
the user navigate the site. This article discusses such a menu with the code available. One can
certainly dress up the menu with graphics, etc. The menu system is a tree of folders and pages
that one can set up with a simple maintenance program.

What we are trying to achieve:

Here we have a picture of the menu showing a level of the
branches available on the menu. The menu system is totally
database driven with the data entered on a menu maintenance
screen (discussed later.)

Upon clicking the Tickets link,
we wish the sub-links of the
menu to appear. An example of
this is shown to the right.

There are indentions to help the
user determine how far into the
tree they have clicked through.

The menu has the option of

placing “targets” in the hyperlink to allow the opening of a new
window, or the page the link refers to into some pre-defined
frame.

The table structure

The menu information is stored within a table called Menu. The table has the following fields:

Field Purpose
MenuID Unique identifier for the menu item
ParentMenuID Used to identify the menu item this menu item is found under. The top

most have a blank value in this field.

Progress E-Zine Issue 17

 Page 8 of 16

MenuID:Maintenance

ParentMenuID:

Name:

FriendlyName:Maintenance

URL:

MenuID:
Maintenance.Positions

ParentMenuID:Maintenance

Name:

FriendlyName:Positions

URL:EditPositionsl.html

Record 1

Record 2

Target:

Target:Workspace

Name Not Used
URL The URL of the page that when the item is clicked should appear in the

Target area. Leave this blank to have the item be a “folder” for a
collection of other menu entries.

FriendlyName What appears on the hyperlink viewed by the user.
Target Target window/frame the page should appear in.

Here is a visual relation between two records, one which is the parent and the other is a child.
The data is represented in each box, with the field name to the left of the colon , and the sample
data to the right of the colon.

Record 1 is the parent record. It is a top most record because it’s
ParentMenuID is blank. It is uniquely identified by the

MenuID “Maintenance” – the sub-menu items of this
record will have

“Maintenance” as
their ParentMenuID
value. The
FriendlyName of
Record 1 is
“Maintenance” This

is what will appear on the data that will appear as the
hyperlink on the Menu.html page.

Record 2 has a MenuID of “Maintenance.Positions.” I tend to use a dot notation of the path the
menu item should be found under as it’s unique identifer. When I look at data dumps, it helps
organize the information a little better for comprehension. Notice that Record 2’s ParentMenuID
is the MenuID of Record 1. This will place it below the parent on the screen as a sub-item on the
menu. The FriendlyName will appear as Positions on the Menu.html screen for the user to click
on. When the user clicks on this item, the page specified in URL will appear, in this case it is
EditPositions.html. The EditPositions.html page will appear in the Target called “Workspace.”
This is either the name of a <FRAME> in a <FRAMESET> or a window that exists (if a window
does not exist, it will become a pop-up window.)

The Menu.html program

The following is the source code to the menu screen we see above. It is written in the E4GL
style.

Progress E-Zine Issue 17

 Page 9 of 16

<!--WSS

DEF VAR RCSVersion AS CHARACTER INIT "$Header:
/home/appl/opensrc/menu/src/RCS/Menu.html,v 1.2 2002/04/22 21:59:10 sauge Exp
sauge $" NO-UNDO.

DEF VAR cMenuTree AS CHARACTER NO-UNDO.
DEF VAR cMenuID AS CHARACTER NO-UNDO.

ASSIGN cMenuID = GET-VALUE("MenuID").

RUN GenTree.p (input cMenuID, "Menu.html", output cMenuTree).

-->
<html>
<head>
<title>Menu</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#CCCCFF">
<p>Company
Name</p>
Top

`cMenuTree`

</body>
</html>

It is a straight forward program that identifies the last menuid clicked on the tree of links
provided by the GenTree.p program. It then renders the menu hierarchy on a HTML page.

The GenTree.p Program

The GenTree.p program uses FindDepth.p to identify how far into the menu the item the user
clicked on is. It then
begins rendering the
HTML needed for the
hyperlinks using the
GenTreeHTML.p
program.

It returns a string with
the value of the HTML
code needed to render
the menu on the page.
In the Menu.html

Analysts Express, Inc.

Webspeed Training and progress programming.

Call James Arnold at
888-889-9091

or
jarnold@mylinuxisp.com

Progress E-Zine Issue 17

 Page 10 of 16

program, this is represented by the variable cMenuTree.

DEF VAR RCSVersion AS CHARACTER INIT "$Header:
/home/appl/opensrc/menu/src/RCS/GenTree.p,v 1.1 2002/04/22 21:59:17 sauge Exp
sauge $" NO-UNDO.

DEF INPUT PARAMETER cMenuID AS CHARACTER NO-UNDO.
DEF INPUT PARAMETER cHTMLPageName AS CHARACTER NO-UNDO.
DEF OUTPUT PARAMETER cMenuHTML AS CHARACTER NO-UNDO.

DEF VAR iMaxDepth AS INTEGER NO-UNDO.
DEF VAR cHTML AS CHARACTER NO-UNDO.

FIND FIRST Menu NO-LOCK
WHERE Menu.ParentMenuID = cMenuID
NO-ERROR.

IF NOT AVAILABLE Menu THEN RETURN.

RUN FindDepth.p
(Menu.MenuID,
 0,
 OUTPUT iMaxDepth
).

RUN GenTreeHTML.p
(INPUT cHTML,
 INPUT cMenuID,
 INPUT cMenuID,
 INPUT iMaxDepth - 1,
 INPUT cHTMLPageName,
 OUTPUT cMenuHTML
).

Notice that there is an cHTMLPageName as an argument. This is to effectively use the routines
in pages named other than Menu.html. One may want to create a page that starts with a specific
menu and this would allow that to happen. For other programs, these routines will have to act as
templates (the maintenance program has some variation on these routines.)

The FindDepth.p program

This is a very simple recursive program that when given a menu item, walks up the tree to the top
finding out how many deep the item is located in the menu structure. It returns this value as
output.

DEF VAR RCSVersion AS CHARACTER INIT "$Header:
/home/appl/opensrc/menu/src/RCS/FindDepth.p,v 1.1 2002/04/22 21:59:17 sauge Exp
sauge $" NO-UNDO.

DEF INPUT PARAMETER cParentMenuID AS CHARACTER NO-UNDO.
DEF INPUT PARAMETER cCount AS INTEGER NO-UNDO.
DEF OUTPUT PARAMETER cDepthCount AS INTEGER NO-UNDO.

FIND FIRST Menu NO-LOCK
WHERE Menu.MenuID = cParentMenuID

Progress E-Zine Issue 17

 Page 11 of 16

NO-ERROR.

IF AVAILABLE Menu THEN ASSIGN cCount = cCount + 1.
IF Menu.ParentMenuID <> "" THEN RUN FindDepth.p (Menu.ParentMenuID,
 cCount,
 OUTPUT cDepthCount).
ELSE cDepthCount = cCount.

The GenTreeHTML.p program

The GenTreeHTML.p program does the most grunt work for actually rendering the important part
of the page – the menu hierarchy.

It does this by receiving a MenuID as input, as well as the depth the menu ID is at. Remember
the depth is computed in the FindDepth.p program and then passed along to this program. This
program calls it’s self recursively, and decrements the depth on each call as it moves up the tree
of menu items. This depth acts as a multiplier to SUBSTRING () a line of –‘s appropriate to the
depth of the current menuid examined. It then returns the string, as well as the <A> hyperlink for
the given MenuID.

DEF VAR RCSVersion AS CHARACTER INIT "$Header:

/home/appl/opensrc/menu/src/RCS/GenTreeHTML.p,v 1.3 2002/04/22 21:59:17 sauge

Exp sauge $" NO-UNDO.

DEF INPUT PARAMETER cHTML AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER cMenuID AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER cPopoutMenuID AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER iMaxDepth AS INTEGER NO-UNDO.

DEF INPUT PARAMETER cHTMLPageName AS CHARACTER NO-UNDO.

DEF OUTPUT PARAMETER cOutHTML AS CHARACTER NO-UNDO.

DEF BUFFER BufMenu FOR Menu.

DEF VAR cString AS CHARACTER NO-UNDO.

ASSIGN cString = "---------------------------------".

FIND Menu NO-LOCK

WHERE Menu.MenuID = cMenuID

NO-ERROR.

IF AVAILABLE Menu THEN RUN GenTreeHTML.p (INPUT cOutHTML,

 INPUT Menu.ParentMenuID,

 INPUT Menu.MenuID,

 INPUT iMaxDepth - 1,

 INPUT cHTMLPageName,

 OUTPUT cOutHTML).

Progress E-Zine Issue 17

 Page 12 of 16

FOR EACH Menu NO-LOCK

WHERE Menu.ParentMenuID = cMenuID:

 ASSIGN cOutHtml = cOutHTML

 + SUBSTRING (cString, 1, iMaxDepth * 3).

 IF Menu.URL = "" THEN

 ASSIGN cOutHtml = cOutHTML

 + "<a href=~"" + cHTMLPageName + "?MenuID=" + Menu.MenuID .

 ELSE

 ASSIGN cOutHtml = cOutHTML

 + "<a href=~"" + Menu.URL .

 ASSIGN cOutHtml = cOutHTML

 + "~"" .

 ASSIGN cOutHTML = cOutHTML

 + IF Menu.Target = "" THEN ">"

 ELSE " target=~"" + Menu.Target + "~">".

 ASSIGN cOutHTML = cOutHTML

 + Menu.FriendlyName + ""

 + "
~n".

 IF Menu.MenuID = cPopoutMenuID THEN LEAVE.

END.

These hyperlinks are then concatenated together and returned to previous calls of the routine until
finally it comes back to the GenTree.p routine with all the strings concatenated together.

One may ask why not use internal procedures or
functions for these recursive routines. The answer
is that buffer scoping does not work to an
advantage in recursive calls to these kinds of
routines. The last buffer found is used as the
recursion winds upwards, and this messes up some
of the values that are concatenated together based
on what is in the database record found for that
recursion.

Amduus Information Works, Inc.
http://www.amduus.com
scott_auge@yahoo.com sauge@amduus.com

Creation of modules and products for re-sale
as well customized Internet/Intranet programming
for E-Business in the marketing/manufacturing/
service and law enforcement industries.

Progress E-Zine Issue 17

 Page 13 of 16

That pretty much handles it for the Menu presentation routines. In the next E-Zine, I will present
the maintenance program to conveniently edit this structure.

License

/*
 * Written by Scott Auge scott_auge@yahoo.com sauge@amduus.com
 * Copyright (c) 2002 Amduus Information Works, Inc. www.amduus.com
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by Amduus Information Works
 * Inc. and its contributors.
 * 4. Neither the name of Amduus Information Works, Inc. nor the names of
 * its contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY AMDUUS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AMDUUS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

Publishing Information:

Scott Auge publishes this document. I can be reached at sauge@amduus.com.

mailto:scott_auge@yahoo.com
mailto:sauge@amduus.com

Progress E-Zine Issue 17

 Page 14 of 16

Currently there are over 800 subscribers and companies that receive this mailing! This
mailing is not sent unsolicited, so it is not SPAM.

Amduus Information Works, Inc. assists in the publication of this document:

Amduus Information Works, Inc.
1818 Briarwood
Flint, MI 48507
http://www.amduus.com

Article Submission Information:

Please submit your article in Microsoft Word format or as text. Please include a little bit
about yourself for the About the Author paragraph.

Looking for technical articles, marketing Progress articles, articles about books relevant
to programming/software industry, white papers, etc.

Progress E-Zine Issue 17

 Page 15 of 16

I am looking for work, if you have any knowledge of potential work, I
would appreciate hearing from you!

http://www.amduus.com/Resumes/ScottAuge.html

Thanks!

http://www.amduus.com/Resumes/ScottAuge.html

Progress E-Zine Issue 17

 Page 16 of 16

Order Form for Progress Open Source CD-ROM

COUPON 001A

This is an offer for the CD-ROM at lower than list savings!

Mail this form to:
Amduus Information Works, Inc.

1818 Briarwood
Flint, MI 48507

Please send ______ copies of the Open Source CD-ROM at $15.00 per disk to:

Name __
Company __

Address __
City __

State __
Zip __

Please make your checks/money orders out to: Amduus Information Works, Inc.
This offer only valid in the United States of America.

The CD-ROM includes (all source code included):

• Blue Diamond/IRIS – Webspeed alternatives
• Survey Express – easily create text templates of surveys and then have the program

generate the web pages automatically
• Service Express – Web based Help Desk.
• The Progress E-Zines, books on learning to program in Webspeed (PDF/Word/HTML)
• THING – simple tool to manipulate database records with
• CMS – a web content management system
• DB Email – Use pop3 to download emails into a Progress database
• Neural Networks – experiments in spam recognition and text message classification
• More!

	The Progress Electronic Magazine
	Publisher’s Statement:
	Coding Article: Using vi features to increase programmer productivity part II
	
	
	
	
	
	Written by Sam Paakki

	Function 1: Copy and Paste
	Function 2: Move block indentation to right/left
	Function 3: Comment and Un-comment

	Coding Article: Web based menuing system Part I
	
	
	
	
	
	Written by Scott Auge sauge@amduus.com

	What we are trying to achieve:
	The table structure
	The Menu.html program
	The GenTree.p Program
	The FindDepth.p program
	The GenTreeHTML.p program
	License

	Publishing Information:
	Article Submission Information:
	
	
	
	Flint, MI 48507

