
Progress E-Zine Issue 18

 Page 1 of 21

The Progress Electronic Magazine

In this issue:

Publisher’s Statement: .. 2
Coding Article: Syntax coloring in vim... 3

vim in the X-Windows world .. 3
About character terminal emulators .. 4
Defining vim to use syntax coloring ... 5
The syntax file ... 6

Colors available for terminals ... 6
Colors available for GUI ... 6
Highlights available on terminals and GUI ... 7
Grouping symbols into sets that are colored ... 7

Sample Definition File .. 8
More information .. 9
Another vim author for Progress ... 9

Coding Article: Web based menu system Part II ... 9
What we are trying to achieve ... 9
The MenuMaintenance.html code:.. 12
MtnGenTree.p ... 16
MtnGenTreeHTML.p .. 17
DelTree.p... 19

Publishing Information:.. 20
Article Submission Information:.. 20

Did you sign up to receive this E-Zine? Send email to sauge@amduus.com to subscribe
or fill out the forms at http://www.amduus.com/online/dev/ezine/EZineHome.html ! It’s

free! (Though donations are certainly welcome – whatever you feel is fair!)

Though intended for users of the software tools provided by Progress Software Corporation, this document is
NOT a product of Progress Software Corporation.

mailto:scott_auge@yahoo.com
http://www.amduus.com/online/dev/ezine/EZineHome.html

Progress E-Zine Issue 18

 Page 2 of 21

Publisher’s Statement:

When I put out word that issue 16 was to have vi productivity tips I was emailed by someone
hoping that it would be syntax highlighting. Well, now that I have got some ideas on how to
achieve this – here it is! Hence, how to do Progress syntax highlighting in both the GUI and
CHUI worlds of the UNIX environment with the vim editor is included in this issue. The vim
editor stands for vi-improved and is available for many platforms. The one I used is on Red Hat
7.1 Linux.

Please keep Amduus Information Works, Inc. in mind when you have a project coming up!
There is more than just one guy associated with this corporation! Amduus is already influencing
the programming practices of hundreds of programmers in hundreds of companies – can’t be all
that bad!

Following that article is the completion of the menu maintenance article started in issue 17. This
is a simple to use maintenance program to build up the menu that is rendered in the code given in
issue 17. With a bit of tweaking, it can probably work with BOMs and other tree based data
structures!

Amduus Information Works, Inc. is looking for representatives for the company. We would back
you up for support plans and work you may encounter.

To your success,
Scott Auge
Founder, Amduus Information Works, Inc.
sauge@amduus.com

mailto:sauge@amduus.com

Progress E-Zine Issue 18

 Page 3 of 21

Coding Article: Syntax coloring in vim

Written by Scott Auge

It just doesn’t seem fair that the Windows world has syntax highlighting when us in the UNIX
world do not! After all, isn’t UNIX where e-mail, networking, the world wide web, and all that
came from?

Actually – we can do syntax highlighting in the UNIX environment – in this particular instance I
am showing it with Red Hat 7.1 and Windows UNIX connectivity tools from WRQ
(www.wrq.com) software. An example using a Terminal Emulator is given for the telnet fans,
and an example given with X-Windows is given for the GUI fans.

This covers simple 4GL – but in the future, I plan on working on something that handles the
syntax for E4GL – something that would definitely by useful – especially for those `` tags tossed
in the HTML.

vim in the X-Windows world

GUI vim on UNIX
with syntax
highlighting

In the GUI world of
UNIX, the vim editor
worked quite nicely
and I was surprised
by it’s ease of use.
Scrolling, opening
and closing of files,
etc all could be done
via clicks of the
mouse. But yet it still
had the power of the
vi macros, etc.

http://www.wrq.com/

Progress E-Zine Issue 18

 Page 4 of 21

About character terminal emulators

Character terminals were a little more challenging. As you can see below, I can set up colors for
text under my emulation (vt400-7) under certain attributes. I have six attributes I can play with
which will give me six colors on my screen. As this does effect the other programs you might use
telnet for, you may wish to set up a different parameter file for a session that you would use vim
with. Otherwise you might be fiddling with colors as you go between editing and using other
programs.

Setting up the colors

on VT400-7

Once the colors are
chosen, it comes out
pretty nicely as can be
seen below. Some of
the things you may
want different colors
for are:

• Progress 4GL statements
• Strings and numbers
• Comments

As you can see, these are three items. Philip Uren maintains a syntax file that is already
distributed with vim! He has introduced a DEBUG/TODO word used in comments that help
those items stand out some.

Progress E-Zine Issue 18

 Page 5 of 21

CHUI (VT400-7) vim with syntax highlighting1

Defining vim to use syntax coloring

First be forewarned that some distributions of vim do not have syntax highlighting installed. On
my VA Linux 6.2 machine, I had vim, but when I tried to use syntax highlighting it said that
option was unavailable! Luckily I had another machine with Red Hat 7.1 installed on it – and it
ran just fine!

The use of vim for syntax highlighting can be very powerful, where based on the postfix of the
file, it will figure out if it is fortan, c, progress, or what have you. The explanation in this article
is very simple as it is a way to tell vim how use the progress syntax and that’s all.

First one should create a .vimrc in your home directory. It can use all the items spoken of in the
.exrc2 and .virc files, but adds some more definitions that are vim related.

$HOME/.vimrc

1 DISP & NO-LOCK in this syntax definition has no definition so it is treated as normal. Notice how the
arithmetic symbols are highlighted also due to a rule.
2 See Issue 16 for abbreviations, which can increase your typing speed by 50% to 70%!!!

Progress E-Zine Issue 18

 Page 6 of 21

Inside this file, you can add items that you normally would need to enter in command mode in
vim. This provides a nice short cut way of getting vim configured. To enable syntax
highlighting, you want to have these three lines in your .vimrc file.

syntax enable
syntax on
set syntax=progress

The syntax file

Next there is a special file used to define the syntax highlighting rules. You will want to create a
.vim/syntax directory in your home directory, with a file named progress.vim. (The set
syntax= in the .vimrc uses that name plus the postfix .vim to identify the file in this directory.)

$HOME/.vim/syntax/progress.vim

This can get complicated, so lets start with what we want – some colors!

Colors available for terminals

The first 8 colors are available in terminals with 8 colors. All the colors are available in terminals
with 16 colors. You refer to the color by it’s name, as you will see later on.

 0 0 Black
 1 4 DarkBlue
 2 2 DarkGreen
 3 6 DarkCyan
 4 1 DarkRed
 5 5 DarkMagenta
 6 3 Brown, DarkYellow
 7 7 LightGray, LightGrey, Gray, Grey
 8 0* DarkGray, DarkGrey
 9 4* Blue, LightBlue
 10 2* Green, LightGreen
 11 6* Cyan, LightCyan
 12 1* Red, LightRed
 13 5* Magenta, LightMagenta
 14 3* Yellow, LightYellow
 15 7* White

Colors available for GUI

The terminal colors as well as these are available under GUI .

 Red LightRed DarkRed
 Green LightGreen DarkGreen SeaGreen
 Blue LightBlue DarkBlue SlateBlue

Progress E-Zine Issue 18

 Page 7 of 21

 Cyan LightCyan DarkCyan
 Magenta LightMagenta DarkMagenta
 Yellow LightYellow Brown DarkYellow
 Gray LightGray DarkGray
 Black White
 Orange Purple Violet

Highlights available on terminals and GUI

Not only can you control the color, but you can control the attributes for the text with these
words. Note on the example terminal above, I used these and the color settings on the terminal
emulation program to achieve color syntax highlighting.

 bold
 underline
 reverse
 inverse same as reverse
 italic
 standout
 NONE no attributes used (used to reset it)

Grouping symbols into sets that are colored

Words that are to be syntax colored are gathered into sets. These sets are named however you
wish to name them, and then later on those sets are associated with a color and highlight that
should be used when they are displayed in vim. These sets are of three types: keyword, region,
and match. The syntax is as follows:

syn [keyword|match|region] SetName SetElements

So, to define some Progress 4GL keywords, one would do the following:

syn keyword ProgressStatement DEFINE DEF VAR VARIABLE FOR EACH ASSIGN

syn keyword ProgressStatement CREATE DELETE FIND

As you can see, definitions can be continued on multiple lines to the same set called
ProgressStatement.

One then defines the color this set would be shown in when rendered on the screen. This is done
with the highlight statement which can be abbreviated hi. Of it, there are five attributes that are
interesting: term, termfg, termbg, guifg, guibg

Progress E-Zine Issue 18

 Page 8 of 21

These mean terminal foreground and background, gui foreground and background color, as well
as the terminal attribute that works in both gui and terminal use of vim. Here is an example used
to provide the color syntax in the above pictures:

hi ProgressStatement guifg=green ctermfg=green term=bold

As you can see, you can mix and match the gui and chui keywords.

So now that we know how to do individual words, how do we handle sets of words? Such as
those items in a progress comment? We do this with the “region” version of the syntax line. It’s
format is this:

syn region SetName start=”regexp” end=”regexp” contains=ListOfSets

An example as follows for progress comments:

syn region ProgressComment start="/*" end="*/"
contains=ProgressComment,ProgressTodo,ProgressDebug,ProgressNeedsWork

The contains list is use to prevent the override of those item’s color by the regions color
definition. For example:

syn keyword ProgressTodo TODO

hi ProgressToDo guifg=black guibg=yellow

will give the word TODO a black text on a yellow background. When TODO is included in a
comment, we do not want to loose this coloring, so we assign it to a group and tell the region
definition about it.

But, back to the region definition, once we have a name associated to the region, we can color the
name:

hi ProgressComment guifg=red termfg=red term=highlight

Sample Definition File

“ This is a comment

“ Ignore word case

syn case ignore

Progress E-Zine Issue 18

 Page 9 of 21

“ Define some progress keywords

syn keyword ProgressStatement DEFINE DEF VAR VARIABLE FOR EACH ASSIGN

syn keyword ProgressStatement CREATE DELETE FIND

“ Define a region for Progress comments

syn region ProgressComment start="/*" end="*/"
contains=ProgressComment

“ Associate groups to colors
hi ProgressComment guifg=red termfg=red term=highlight

hi ProgressStatement guifg=green ctermfg=green term=bold

More information

:help syntax in the vim editor.

Another vim author for Progress

I borrowed a little from the work of Philip Uren philu@computer.org for this article.

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

Coding Article: Web based menu system Part II

Written by Scott Auge sauge@amduus.com

What we are trying to achieve

Below you see a picture of the maintenance program. It allows recursive work on the menu
keeping track of which part of the menu the user is working on.

One of the inputs is the ParentID of a menu item. If the parent ID is empty, then the menu item is
placed at the top of the menu structure. Else, the parent ID should be the menu id of a menu item
for which that entry should be below.

mailto:philu@computer.org
mailto:scott_auge@yahoo.com

Progress E-Zine Issue 18

 Page 10 of 21

The menuID uniquely identifies the menu item compared to the other menu items. It never
appears to the user, but is used as an internal value to short hand the menu name as a foreign key.
It should not contain spaces.

Basic inputs for the
page

Following that entry,
is the Friendly Name.
This is what appears
to the user as the text
of the hyperlink. It
can contain spaces
and should be the title
of the screen or
collection of items the
user wishes to drill
down into.

The URL is what lies

under the hyperlink. It can be a relative or absolute URL to a web page. If left blank, then the
item becomes a folder the user is expected to be able to drill down into.

Obviously we do not want the new web page to appear in the same window or frame as the menu
– and so the Target input identifies the FRAME name or Window name the web page noted in
URL should open in. Most browsers will open a new window for names not in framesets.

Name is unused in this program.

One would use the existing menu items at the top to navigate to a level in which to delete and
modify an entry, or to reach a level in which to add new items. The purpose of the navigation is to
help pre-populate the data entry fields. If one knows the structure well, s/he could merely
populate the data entry fields themselves.

Progress E-Zine Issue 18

 Page 11 of 21

Creating a Tickets
folder on the menu

To create an entry,
one merely fills in
the items, and
clicks the New
button. A record
will be made.
Dangling records,
that is records that
cannot be reached
by menu items
above will not be
shown.

Deletion occurs on
the Menu Id given
on the screen and
clicking the Delete button. All entries beginning at that menu id and including the menu id will be
removed from the
database. The
screen will leave
the user editing the
next highest record,
if there is one.

Updating a record
is based on the
Menu ID. The
value in the Menu
ID will decide
which record is
updated. One can
walk the navigation
tree to reach the
record, or merely
type it in and click
Update.

Progress E-Zine Issue 18

 Page 12 of 21

The menu ID should never be modified once it is created.

A more advanced use would allow the user to move an entire tree of menu items under a different
menu item by set the Parent ID directly to the menu id of the entry you wish the tree to fall under.

The MenuMaintenance.html code:

The MenuMaintenance code is pretty straight forward. An “action” is specified, being Blank,
Delete, Update, or New – just like the actions of the buttons. One can think of this as web event
programming ☺.

It searches for the Menu record identified by the NVP3 MenuID. One can then delete it by calling
DelTree.p or update it using the NVPs for the input boxes, or create one and then updating it via
the NVPs of the input boxes.

It then renders the Menu tree placing that HTML into a variable.

That variable is then displayed along with the HTML.

DEF VAR cMenuTree AS CHARACTER NO-UNDO.

DEF VAR cParentMenuID AS CHARACTER NO-UNDO.

DEF VAR cMenuID AS CHARACTER NO-UNDO.

DEF VAR cName AS CHARACTER NO-UNDO.

DEF VAR cFriendlyName AS CHARACTER NO-UNDO.

DEF VAR cURL AS CHARACTER NO-UNDO.

DEF VAR cTarget AS CHARACTER NO-UNDO.

DEF VAR cAction AS CHARACTER NO-UNDO.

/* Figure out which menu item we are working with */

ASSIGN cMenuID = GET-VALUE("MenuID").

ASSIGN cParentMenuID = GET-VALUE("ParentMenuID").

ASSIGN cAction = GET-VALUE("Submit").

/* Pre-populate the values if we can */

IF cMenuID <> "" AND cAction = "" THEN DO:

3 NVP is Name/Value Pair. Name associated to an input widget and its value.

Progress E-Zine Issue 18

 Page 13 of 21

 FIND Menu NO-LOCK

 WHERE Menu.MenuID = cMenuID

 NO-ERROR.

 ASSIGN

 cName = Menu.Name

 cFriendlyName = Menu.FriendlyName

 cURL = Menu.URL

 cTarget = Menu.Target

 cParentMenuID = Menu.ParentMenuID.

END.

IF cAction = "Delete" THEN DO:

 RUN DelTree.p (INPUT cMenuID, OUTPUT cMenuID).

END.

ELSE IF cAction = "Update" THEN DO:

 FIND Menu EXCLUSIVE-LOCK

 WHERE Menu.MenuID = cMenuID

 NO-ERROR.

 ASSIGN

 cName = GET-VALUE("Name")

 cFriendlyName = GET-VALUE("FriendlyName")

 cURL = GET-VALUE("URL")

 cTarget = GET-VALUE("Target")

 cParentMenuID = GET-VALUE("ParentMenuID").

 ASSIGN

 Menu.ParentMenuID = cParentMenuID

 Menu.MenuID = cMenuID

 Menu.URL = cURL

 Menu.Target = cTarget

 Menu.FriendlyName = cFriendlyName

 Menu.Name = cName.

END.

ELSE IF cAction = "New" THEN DO:

Progress E-Zine Issue 18

 Page 14 of 21

 CREATE Menu.

 ASSIGN

 cName = GET-VALUE("Name")

 cFriendlyName = GET-VALUE("FriendlyName")

 cURL = GET-VALUE("URL")

 cTarget = GET-VALUE("Target").

 cParentMenuID = GET-VALUE("ParentMenuID").

 cMenuID = GET-VALUE("MenuID").

 ASSIGN

 Menu.ParentMenuID = cParentMenuID

 Menu.MenuID = cMenuID

 Menu.URL = cURL

 Menu.Target = cTarget

 Menu.FriendlyName = cFriendlyName

 Menu.Name = cName.

END.

RUN MtnGenTree.p

(INPUT cMenuID,

 INPUT "MenuMaintenance.html",

 OUTPUT cMenuTree).

-->

<html>

<head>

<title>Menu Maintenance</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1">

</head>

<body bgcolor="#FFFFFF">

<table width="80%" border="0" cellspacing="0" align="center">

 <tr>

 <td>

 Top

 `cMenuTree`

 </td>

 </tr>

</table>

<form method="post">

Progress E-Zine Issue 18

 Page 15 of 21

 <p align="center"><font face="Arial Narrow" size="+1"

color="#000066">Current

 working Parent: `cParentMenuID`

 Current Working Item `cMenuID`</p>

 <table width="80%" border="0" cellspacing="0" align="center"

bgcolor="#CCCCFF">

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">

ParentID</div>

 </td>

 <td>

 <input type="text" name="ParentMenuID" value="`cParentMenuID`">

 </td>

 </tr>

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">

MenuID</div>

 </td>

 <td>

 <input type="text" name="MenuID" value="`cMenuID`">

 </td>

 </tr>

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">Friendly

 Name</div>

 </td>

 <td>

 <input type="text" name="FriendlyName" value="`cFriendlyName`">

 </td>

 </tr>

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">URL</div>

 </td>

 <td>

 <input type="text" name="URL" value="`cURL`">

 Empty is a folder</td>

 </tr>

Progress E-Zine Issue 18

 Page 16 of 21

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">Target</div>

 </td>

 <td>

 <input type="text" name="Target" value="`cTarget`">

 </td>

 </tr>

 <tr>

 <td>

 <div align="right"><font face="Arial Narrow" size="+1"

color="#000066">Name</div>

 </td>

 <td>

 <input type="text" name="Name" value="`cName`">

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <center>

 <input type="submit" name="Submit" value="Delete">

 <input type="submit" name="Submit" value="Update">

 <input type="submit" name="Submit" value="New">

 </center>

 </td>

 </tr>

 </table>

</form>

<p align="center"><font face="Arial Narrow" size="3"

color="#FF0000">Warning!

 Deletion will eliminate all entries below this entry!</p>

</body>

</html>

MtnGenTree.p

Same as the GenTree.p of before, but has more stringent checks on the existence of records, and
handles the depth differently because while editing the menu, we can actually go down one
deeper than exists (after all, that is how we create new items and levels.)

DEF INPUT PARAMETER cMenuID AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER cHTMLPageName AS CHARACTER NO-UNDO.

Progress E-Zine Issue 18

 Page 17 of 21

DEF OUTPUT PARAMETER cMenuHTML AS CHARACTER NO-UNDO.

DEF VAR iMaxDepth AS INTEGER NO-UNDO.

DEF VAR cParentMenuID AS CHARACTER NO-UNDO.

DEF VAR cHTML AS CHARACTER NO-UNDO.

ASSIGN iMaxDepth = 0.

FIND Menu NO-LOCK

WHERE Menu.Menu = cMenuID

NO-ERROR.

IF NOT AVAILABLE Menu THEN DO:

 FIND FIRST Menu NO-LOCK

 WHERE Menu.ParentMenuID = ""

 NO-ERROR.

 IF NOT AVAILABLE Menu THEN RETURN.

 ASSIGN iMaxDepth = -1.

END.

RUN FindDepth.p

(Menu.MenuID,

 iMaxDepth,

 OUTPUT iMaxDepth

).

RUN MtnGenTreeHTML.p

(INPUT cHTML,

 INPUT cMenuID,

 INPUT cMenuID,

 INPUT iMaxDepth,

 INPUT cHTMLPageName,

 OUTPUT cMenuHTML

).

MtnGenTreeHTML.p

Progress E-Zine Issue 18

 Page 18 of 21

This is very similar to the GenTreeHTML.p program, but since we are working at a lower level
than usual (in other words, we can be at a menu level that does not yet exist!) it needed to be
touched up a bit.

DEF INPUT PARAMETER cHTML AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER cMenuID AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER cPopoutMenuID AS CHARACTER NO-UNDO.

DEF INPUT PARAMETER iMaxDepth AS INTEGER NO-UNDO.

DEF INPUT PARAMETER cHTMLPageName AS CHARACTER NO-UNDO.

DEF OUTPUT PARAMETER cOutHTML AS CHARACTER NO-UNDO.

DEF BUFFER BufMenu FOR Menu.

DEF VAR cString AS CHARACTER NO-UNDO.

ASSIGN cString = "---------------------------------".

FIND Menu NO-LOCK

WHERE Menu.MenuID = cMenuID

NO-ERROR.

IF AVAILABLE Menu THEN RUN MtnGenTreeHTML.p (INPUT cOutHTML,

 INPUT Menu.ParentMenuID,

 INPUT Menu.MenuID,

 INPUT iMaxDepth - 1,

 INPUT cHTMLPageName,

 OUTPUT cOutHTML).

FOR EACH Menu NO-LOCK

WHERE Menu.ParentMenuID = cMenuID:

 ASSIGN cOutHtml = cOutHTML

 + SUBSTRING (cString, 1, iMaxDepth * 3).

 ASSIGN cOutHtml = cOutHTML

 + "<a href=~"" + cHTMLPageName

 + "?MenuID=" + Menu.MenuID.

 ASSIGN cOutHtml = cOutHTML

 + "~">" .

 ASSIGN cOutHTML = cOutHTML

 + Menu.FriendlyName + ""

Progress E-Zine Issue 18

 Page 19 of 21

 + "
~n".

 IF Menu.MenuID = cPopoutMenuID THEN LEAVE.

END.

DelTree.p

Deltree.p is recursive deletion of the records starting at the given MenuID record downwards. It
will return the ParentMenuID of the MenuID record given.

DEF INPUT PARAMETER cMenuID AS CHARACTER NO-UNDO.
DEF OUTPUT PARAMETER cParentMenuID AS CHARACTER NO-UNDO.

DEF BUFFER BufMenu FOR Menu.

FIND Menu EXCLUSIVE-LOCK
WHERE Menu.MenuID = cMenuID
NO-ERROR.

IF NOT AVAILABLE Menu THEN RETURN.

FOR EACH BufMenu EXCLUSIVE-LOCK
WHERE BufMenu.ParentMenuID = Menu.MenuID:

 RUN DelTree.p (INPUT BufMenu.MenuID, OUTPUT cParentMenuID).

END.

ASSIGN cParentMenuID = Menu.ParentMenuID.

DELETE Menu.

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

mailto:scott_auge@yahoo.com

Progress E-Zine Issue 18

 Page 20 of 21

Publishing Information:

Scott Auge publishes this document. I can be reached at sauge@amduus.com.

Currently there are over 800 subscribers and companies that receive this mailing! This
mailing is not sent unsolicited, so it is not SPAM.

Amduus Information Works, Inc. assists in the publication of this document:

Amduus Information Works, Inc.
1818 Briarwood
Flint, MI 48507
http://www.amduus.com

Article Submission Information:

Please submit your article in Microsoft Word format or as text. Please include a little bit
about yourself for the About the Author paragraph.

Looking for technical articles, marketing Progress articles, articles about books relevant
to programming/software industry, white papers, etc.

mailto:sauge@amduus.com

Progress E-Zine Issue 18

 Page 21 of 21

Order Form for Progress Open Source CD-ROM

COUPON 001A

This is an offer for the CD-ROM at lower than list savings!

Mail this form to:
Amduus Information Works, Inc.

1818 Briarwood
Flint, MI 48507

Please send ______ copies of the Open Source CD-ROM at
$15.00 per disk to:

Name __
Company __

Address __
City __

State __
Zip __

Please make your checks/money orders out to: Amduus Information Works, Inc. Cash works too!
This offer only valid in the United States of America.

The CD-ROM includes (all source code included):

• Blue Diamond/IRIS – Webspeed alternatives
• Survey Express – easily create text templates of surveys and then have the program

generate the web pages automatically
• Service Express – Web based Help Desk.
• The Progress E-Zines, books on learning to program in Webspeed (PDF/Word/HTML)
• THING – simple tool to manipulate database records with
• CMS – a web content management system
• DB Email – Use pop3 to download emails into a Progress database
• Neural Networks – experiments in spam recognition and text message classification
• GenPDF – create PDF file reports for Webspeed/UNIX CHUI!
• More!

	The Progress Electronic Magazine
	Publisher’s Statement:
	Coding Article: Syntax coloring in vim
	
	
	
	
	
	Written by Scott Auge

	vim in the X-Windows world
	About character terminal emulators
	Defining vim to use syntax coloring
	The syntax file
	Colors available for terminals
	Colors available for GUI
	Highlights available on terminals and GUI
	Grouping symbols into sets that are colored

	Sample Definition File
	More information
	Another vim author for Progress

	Coding Article: Web based menu system Part II
	
	
	
	
	
	Written by Scott Auge sauge@amduus.com

	What we are trying to achieve
	The MenuMaintenance.html code:
	MtnGenTree.p
	MtnGenTreeHTML.p
	DelTree.p

	Publishing Information:
	Article Submission Information:
	
	
	
	Flint, MI 48507

