
Progress E-Zine Issue 25

The Progress Electronic Magazine

In this issue:

Publisher’s Statement: .. 2
Coding Article: Natural Language Interfacing and Adventure Game Part 1 3

What is an adventure game?.. 3
Representing Rooms In The Game.. 3
Representing where the player is in the game ... 6
Pulling it together .. 6

Product Article: Good News, Bad News, Good News .. 8
Coding Article: Programming Prolint by Example: “noeffect”.. 10
Letters: ... 17
Publishing Information:.. 17
Other Progress Publications Available: .. 17
Products Available From Amduus: ... 17
Article Submission Information:.. 18
Order Form for Progress Open Source CD-ROM ... 19

This document may be freely shared with others without modification.

Though intended for users of the software tools provided by Progress Software Corporation, this document is
NOT a product of Progress Software Corporation.

© Amduus Information Works, Inc. 2002

 Page 1 of 19

Progress E-Zine Issue 25

Publisher’s Statement:

In the last E-Zine, I stated “One of the things Peter doesn’t
include, is the name of the program that did the change – my
little contribution of should be’s for the article!” Turns out in
his production system he DOES so, and a few other things that
was not mentioned in the article. My oops!

Also, as I mentioned on the progress E-Mail list, I mentioned the
beginning of a series of articles for natural language processing. To make it a bit more fun of a
read, we will use it within an old time text adventure game. In this issue, we look at the basics of
describing the world the player will be living in and the data structures to describe that. The next
issue will look at the natural language interface used to manipulate those data structures.

Reach nearly one thousand
programmers and companies.

Your ad could be here!

Advertise in the E-Zine for
$10.00 per issue!

Finally, John Green has brought along an article about using Prolint – a freely available open
source application to aid in the development of Progress language based applications. Included
also is a description and how to of his company’s proparse tool in a product article.

To your success,
Scott Auge
Founder, Amduus Information Works, Inc.
sauge@amduus.com

 Page 2 of 19

mailto:sauge@amduus.com

Progress E-Zine Issue 25

Coding Article: Natural Language Interfacing and Adventure Game Part 1

Written by Scott Auge sauge@amduus.com

What is an adventure game?

For the young ones out here, there was a time, long time ago – 1980’s long ago, when games
were played without graphics. In these games, called adventure games, the player used English
phrases to interact with a game representing a world. The game would allow the user to
maneuver around a map of places, as well manipulate objects and interact with various creatures
encountered in the world.

This is simple enough where we do not need to explain and develop a lot of technology and
algorithms, but yet allow us to get to the point of using a Natural Language Interface to interact
with a Progress based application.

Representing Rooms In The Game

Below is a simple map that we will use to allow the user to maneuver around.

GateRoom
1

N
or

th

South Hall
2

AnteRoom
3

North Hall
5

Library
4

Map of places in the game

 Page 3 of 19

Progress E-Zine Issue 25

Each place a player can reside is represented by a Room. Each Room has a name and a number
representing it. We can use a graphing matrix to represent the places and connections between
them as follows:

Room North South East West
1 2 0 0 0
2 5 1 4 3
3 0 0 2 0
4 0 0 0 2
5 0 2 0 0

One reads this as follows, I am currently in Room number n. If I want to go south, I look in the
column South and that will put me in Room m. Very simple. As you can guess, the table for the
Room Map is simply a definition of:

============================= Table: RoomMap ============================

 Table Flags: "f" = frozen, "s" = a SQL table

Table Dump Table Field Index Table

Name Name Flags Count Count Label

----------------------------- -------- ----- ----- ----- -------------------

RoomMap roommap 5 1 ?

 Description: Map of rooms available in an adventure game

 Storage Area: Schema Area

============================= FIELD SUMMARY =============================

============================= Table: RoomMap ============================

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags Format Initial

----- ------------------------- ----------- ----- --------------- ----------

 10 RoomNumber inte i ->,>>>,>>9 0

 20 North inte ->,>>>,>>9 0

 30 South inte ->,>>>,>>9 0

 40 East inte ->,>>>,>>9 0

 50 West inte ->,>>>,>>9 0

Field Name Label Column Label

------------------------------ ---------------------- ----------------------

RoomNumber RoomNumber RoomNumber

North North North

South South South

East East East

West West West

 Page 4 of 19

Progress E-Zine Issue 25

============================= INDEX SUMMARY =============================

============================= Table: RoomMap ============================

Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc, - desc

Flags Index Name Cnt Field Name

----- -------------------------------- --- ---------------------------------

pu pukey 1 + RoomNumber

** Index Name: pukey

 Storage Area: Schema Area

Needless to say, to add more depth to the game, each room should have a description. Below is
the table to hold the description of the room.

============================= Table: RoomDesc ===========================

 Table Flags: "f" = frozen, "s" = a SQL table

Table Dump Table Field Index Table

Name Name Flags Count Count Label

----------------------------- -------- ----- ----- ----- -------------------

RoomDesc roomdesc 2 1 ?

 Description: Description of rooms in an adventure game

 Storage Area: Schema Area

============================= FIELD SUMMARY =============================

============================= Table: RoomDesc ===========================

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags Format Initial

----- ------------------------- ----------- ----- --------------- ----------

 10 RoomNumber inte i ->,>>>,>>9 0

 20 Description char x(80)

Field Name Label Column Label

------------------------------ ---------------------- ----------------------

RoomNumber RoomNumber RoomNumber

Description Description Description

============================= INDEX SUMMARY =============================

============================= Table: RoomDesc ===========================

Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc, - desc

Flags Index Name Cnt Field Name

----- -------------------------------- --- ---------------------------------

pu pukey 1 + RoomNumber

 Page 5 of 19

Progress E-Zine Issue 25

** Index Name: pukey

 Storage Area: Schema Area

I leave code to edit these tables up to the readership – perhaps someone will be willing to
contribute!

Representing where the player is in the game

The player’s position in the map is simply held in a variable – PlayerCurrentRoom. Within the
variable is the room number the player is in. To move the player into a different room, re-assign
the variable. Later on, you will realize that we actually don’t keep this in a variable but in a
database table. There is a reason to do this more so than because we are using a web interface.

Pulling it together

We now need an interface screen to basically determine where the user is at via the
PlayerCurrentRoom variable, bring up the appropriate RoomDesc record and display it on the
screen, as well receive input from the player. We do this in a simple web page called Game.html.

<!--WSS

DEF VAR cRoomDescription AS CHARACTER NO-UNDO.
DEF VAR cRoomInventory AS CHARACTER NO-UNDO.

DEF VAR cPlayerCurrentRoom AS CHARACTER NO-UNDO.
DEF VAR iPlayerCurrentRoom AS INTEGER NO-UNDO.

DEF VAR cCommand AS CHARACTER NO-UNDO.

/* Input what the player wants to do */

ASSIGN cCommand = GET-VALUE("Command").

/* Determine where player was at */

ASSIGN cPlayerCurrentRoom = GET-VALUE("PlayerCurrentRoom").
ASSIGN iPlayerCurrentRoom = INT(cPlayerCurrentRoom).

/* Determine what the user's command is all about */

RUN game/ParseCommand.p
(INPUT cCommand).

/* Determine the current room. If none (such as first time in the game */
/* then default to room one. Scotta as the sessionid is just hard coded */
/* for simplicities sake – this should be the user’s login. */

FIND WebState NO-LOCK
WHERE WebState.SessionID = “scotta”
 AND WebState.Category = “Game”
 AND WebState.Name = “PlayerCurrentRoom”
NO-ERROR.

 Page 6 of 19

Progress E-Zine Issue 25

IF AVAILABLE WebState THEN
 ASSIGN iPlayerCurrentRoom = INT(WebState.Data).
ELSE
 ASSIGN iPlayerCurrentRoom = 1.

/* Pull up the appropriate room description */

FIND RoomDesc NO-LOCK
WHERE RoomDesc.RoomNumber = iPlayerCurrentRoom
NO-ERROR.

IF AVAILABLE RoomDesc THEN
 ASSIGN cRoomDescription = RoomDesc.Description.

-->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Game</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">

<p> </p>
<p align="center">Natural Language Processing</p>
<p align="center">Adventure Game</p>
<form name="form1" method="post" action="">
<input type="hidden" value="`cPlayerCurrentRoom`" name="PlayerCurrentRoom">
 <table width="90%" border="0" align="center" bgcolor="#CCCCCC">
 <tr>
 <td> </td>
 </tr>
 <tr>
 <td><table width="90%" border="0" align="center" bgcolor="#FFFFFF">
 <tr>
 <td><p align="center">`cRoomDescription`</p>
 <p align="center">`cRoomInventory`</p></td>
 </tr>
 </table></td>
 </tr>
 <tr>
 <td><center>
 <input name="Command" type="text" id="Command" size="90">
 </center></td>
 </tr>
 <tr>
 <td><center>
 <input type="submit" name="Submit" value="Submit">
 </center></td>
 </tr>
 </table>
</form>
<p> </p>
</body>
</html>

 Page 7 of 19

Progress E-Zine Issue 25

With Game.html we spit out the room description and a prompt for the user to tell us what they
wish to do. Very simple. What is not simple is the underlying logic underneath the prompt. That
is what we will discuss in the next E-Zine!

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

Product Article: Good News, Bad News, Good News

By John Green, www.joanju.com, john@joanju.com

The good news is, you found out from your sales manager that you are going to sell a license of
your software to that big foreign firm. The bad news is, you’ve just been told by the development
manager to go through the entire system, and find all expressions similar to this:
 DISPLAY
 "The sales rep for " + cust-name + " is " + salesrep + "."
 FORMAT "x(60)".

And change them so that they look like this:
 DISPLAY
 SUBSTITUTE("The sales rep for &1 is &2.", cust-name, salesrep)
 FORMAT "x(60)".

You have to do this because the string in the second expression is easier to translate than the
strings in the first expression. Let’s see: There’s 4500 source files in the application, this should
only take you about three weeks or so. Bletch. There must be a better way.

Tedious source code changes like this should be automated or assisted by machine. For one thing,
just finding all lines of code which need to be changed will require programmers to read through
the entire application, because you can’t use “grep” or an XREF database to find expressions like
this.

For another thing, if you have to make dozens (or hundreds!) of changes like this, you are bound
to make a few mistakes.

Finally, having programmers do this by hand is going to take a long time (i.e. it’s expensive!),
and the programmers aren’t going to be particularly happy about spending three weeks doing this
boring task.

 Page 8 of 19

mailto:scott_auge@yahoo.com
http://www.joanju.com/

Progress E-Zine Issue 25

We (www.joanju.com) have had recent success with automating this sort of transformation, using
our product “Proparse”.

Here’s a new term in case you haven’t seen it before: refactoring is the process of improving or
restructuring source code without changing the behaviour of the application.

How do we do it? Well, the first step is
to just find all lines of code which need
to be changed. Prolint (www.global-
shared.com/prolint/) has already been
doing that for a while now. Prolint has
more than 40 “rules” for finding issues
in your source code such as this one,
and the rule named “substitute” is the
one that we are interested in here.

 def var x as int init 1.
 x eq 12.
 display x.

 If you were using Prolint, you wouldn't have spent the

last two hours tracking down this bug.
 Proparse Lite - Only US$65

 Lint your code before check-in.
 Find bugs before your customer does.

w w w . j o a n j u . c o m

Like most rules in Prolint, the
“substitute” rule uses the results from
Proparse in order to find particular
instances of source code. In this case, it
finds all expressions which contain
multiple “+” nodes as well as multiple
translatable strings. If it finds an
instance of that, it reports it.

That’s easy enough, but what about automated refactoring? That turns out to be reasonably
straightforward as well. Proparse generates a tree (an abstract syntax tree, or AST) and each node
in the tree represents some token from the source code, with some extra nodes thrown in for tree
organization. For this transformation, it’s just a matter of adding, changing, and moving a few
nodes around. Have another look at the expression before and after the transformation, and you
might be able to imagine an algorithm for automating the change.

But what if it is a more complex expression, like:
 "The total is " + STRING(subtotal * tax-rate) + " Euros."
That is why we work with a syntax tree, rather than just with a list of tokens. For an expression
like STRING(subtotal * tax-rate), the STRING node is the topmost node in a branch, and
all of the other tokens in (subtotal * tax-rate) are children and grandchildren nodes of the
STRING node. So, when we want to change things around to look like this:
 SUBSTITUTE("The total is &1 Euros.", STRING(subtotal * tax-rate))
…we just have to grab the STRING node and move it around, dragging the entire branch with it.
Easy!

 Page 9 of 19

http://www.global-shared.com/prolint/
http://www.global-shared.com/prolint/

Progress E-Zine Issue 25

Can we build you refactoring tools for your specific needs? You bet! Drop us an email, we might
surprise you with what we’re capable of.

John has been programming in Progress since 1989, and has been lead developer and
team leader on various ERP systems, as well as on Roundtable at Starbase. Recently he
has moved over to the C side (seaside?) in order to develop Proparse. John Green,
www.joanju.com, john@joanju.com

Coding Article: Programming Prolint by Example: “noeffect”

John Green: www.joanju.com, john@joanju.com
With contributions from Jurjen Dijkstra: jurjen@global-shared.com

Corrections and suggestions from Judy Hoffman Green: judy@joanju.com

Yes, Prolint is open source, and yes, Jurjen is very smart, but no, adding new rules to Prolint is
not rocket science!

Now that Prolint has been around for a while, we are starting to see various categories of Prolint
rules emerging. Some find potential performance problems, some find problems in the code
which will make translation (i18n) more difficult, some find problems which would make it more
difficult to use dataservers, and some find problems which might just downright be a bug.

We’ll have a look here at a rule which falls into the bug-finding category: “noeffect”. Try the
following code:

def var x as int init 1.
x eq 12.
display x.

In case you are wondering: yes, this sort of bug actually has been found in production code.

The statement “x eq 12.” is actually just an expression. It compares x to 12, evaluates to “false”,
and that’s it. It doesn’t do anything. It has no effect.

The parser makes it easy to find
statements which are just expressions.
Every statement which becomes a
branch in the syntax tree generated by
the parser must have a “head” node.
For a statement like

DISPLAY “hello”.
the DISPLAY node is the head node,
and all other tokens in the display
statement are child or grandchild nodes to the DISPLAY node.

Analysts Express, Inc.

Webspeed Training and progress programming.

Call James Arnold at
888-889-9091

or
jarnold@mylinuxisp.com

 Page 10 of 19

http://www.joanju.com/
http://www.joanju.com/
mailto:john@joanju.com
mailto:jurjend@wxs.nl
mailto:judy@joanju.com

Progress E-Zine Issue 25

For a statement which is just an expression, Proparse adds a “synthetic” node into the tree, just
for tree organization. The synthetic node is an “Expr_statement” node, and it becomes the head
node for the statement.

Finding all Expr_statement nodes gives us a starting point. Let’s start looking at the code, starting
with some comments about the comments:

/* --
 file : prolint/rules/noeffect.p
 by : John Green
 purpose : Find statements which are nothing but expressions.
 Of those, evaluate which /cannot/ have an effect.
 User-defined functions might have an effect,
 and methods might have an effect.
 Of the built-in functions, I am only aware of the following
 having any effect:
 DYNAMIC-FUNCTION
 ETIME
 SETUSERID
 SUPER
 CURRENT-LANGUAGE

 Copyright (C) 2001,2002 John Green

 This file is part of Prolint.

 Prolint is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 Prolint is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with Prolint; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 --
*/

This standard text needs to be included in the header, it is a requirement of LPGL.
Prolint is open-source and GPL, under the “Lesser GPL”, which means that it can be included in
commercial products, but you must include the source and you just can’t claim it to be your own.
Or something like that. You should not think of this as a limitation of your rights, instead the
LPGL provides the benefit that every improvement to Prolint will always be publicly available
with source. (Proparse is not free though – due to that “pay the rent” thing.)

{prolint/ruleparams.i}

 Page 11 of 19

Progress E-Zine Issue 25

Here we included the basic configuration and setup required for each Prolint rule. We don’t need
to know much about what goes on in there to write a basic rule, except that it is the source of
some of the variables which we will use below.

RUN searchNode {&insuper}
 (hTopnode, /* "Program_root" node */
 "InspectNode":U, /* name of callback procedure */
 "Expr_statement":U). /* list of statements to search, ?=all */

RETURN.

Here we ran Prolint’s search routine, which is found in the Prolint super procedure, lintsuper.p.

The first parameter it requires is the starting point in the syntax tree generated by Proparse. In
almost all cases, we just want to start at the very “root” of the tree – the topmost node. The
variable hTopnode is of course made available to us by ruleparams.i and it is a pointer to the
topmost node in the syntax tree. That’s probably even more than we really need to know.

The procedure searchNode uses a callback mechanism. So, searchNode does the search, and
with the results of that search, it runs what we tell it to run. In our case, we want it to run
InspectNode, which is an internal procedure in this .p, which we’ll describe below. That’s the
second parameter.

How does searchNode know when it should call InspectNode? When it finds an
Expr_statement node within the syntax tree. That’s the final parameter.

That’s it for getting Prolint to find us all of the nodes that we might be interested in. Now let’s
look at where the interesting work is done.

PROCEDURE InspectNode:
 /* purpose: see if the statement in theNode is
 really a statement without effect */
 DEFINE INPUT PARAMETER theNode AS INTEGER NO-UNDO.
 DEFINE OUTPUT PARAMETER AbortSearch AS LOGICAL NO-UNDO INITIAL NO.
 DEFINE OUTPUT PARAMETER SearchChildren AS LOGICAL NO-UNDO INITIAL NO.

Every callback procedure for searchNode requires three parameters. The first is an integer
handle for the node that it found. The integer handle was set up by searchNode, and that handle
is meaningful to the parser. In our case here, theNode will be a handle to an Expr_statement
node.

For this rule, we don’t use AbortSearch or SearchChildren. We’ll talk about those
parameters in future articles about Prolint architecture and other Prolint rules.

 Page 12 of 19

Progress E-Zine Issue 25

Now let’s get back to one of our goals: we want to find all Expr_statement nodes, but there are
certain expression statements which really do have an effect, and we don’t want Prolint to raise
warnings about those.

 DEFINE VARIABLE qname AS CHARACTER NO-UNDO INITIAL "rule_noeffect":U.
 DEFINE VARIABLE i AS INTEGER NO-UNDO.
 DEFINE VARIABLE numResults AS INTEGER NO-UNDO.
 DEFINE VARIABLE result AS INTEGER NO-UNDO.

 result = parserGetHandle().

 check-block:
 DO:

 IF parserQueryCreate(theNode, qname, "USER_FUNC":U) > 0 THEN
 LEAVE check-block.
 IF parserQueryCreate(theNode, qname, "DYNAMICFUNCTION":U) > 0 THEN
 LEAVE check-block.
 IF parserQueryCreate(theNode, qname, "ETIME":U) > 0 THEN
 LEAVE check-block.
 IF parserQueryCreate(theNode, qname, "SETUSERID":U) > 0 THEN
 LEAVE check-block.
 IF parserQueryCreate(theNode, qname, "SUPER":U) > 0 THEN
 LEAVE check-block.

(Here we have run into direct calls to some of Proparse’s “parser” functions. If you would like to
know more beyond the fact that Proparse function names all begin with “parser”, please see
www.joanju.com/whitepapers/, and look for the link to “Proparse API Quick Introduction”.)

We query for specific types of nodes within the Expr_statement branch. Each time the query is
built, it returns the number of results, and if there are any results, then we skip out of check-
block without issuing a warning. As described in the comments at the top of the program, user
defined functions, as well as some built-in functions, are actually functions that perform some
action. Most built-in functions only evaluate something and return a value - they do not actually
change the state of the application.

For a better understanding of the next code snippet, let’s first have a look at two example
statements:

 /* hEditor is a handle to an editor widget.
 We want to switch the editor to read-only: */
 hEditor:READ-ONLY.

 /* hQuery is a handle to a dynamic query.
 We want it to fetch the first record: */
 hQuery:GET-FIRST().

The first statement has no effect, because READ-ONLY is not a method, it is only a property. We
want Prolint to raise a “noeffect” warning for this statement because the programmer probably

 Page 13 of 19

http://www.joanju.com/whitepapers/

Progress E-Zine Issue 25

made a mistake. The second statement actually does have effect (because it fetches a record into
the buffer) so we do not want to raise a warning.
So how can we tell if something is a property and not a method? To answer this, it is necessary to
use the Proparse Tokenlister tool and see how Proparse translates these statement into tokens:

 Expr_statement
 Widget_ref
 Field_ref
 ID hEditor
 OBJCOLON :
 READONLY READ-ONLY
 PERIOD .

 Expr_statement
 Widget_ref
 Field_ref
 ID hQuery
 OBJCOLON :
 ID GET-FIRST
 Method_param_list
 LEFTPAREN (
 RIGHTPAREN)
 PERIOD .

The Tokenlister shows us that we can recognize a property because it contains an “OBJCOLON”
token while it does not contain a “Method_param_list” token. Having learned this, let’s continue
with the Prolint rule:

 /* The last thing we check on is methods.
 a statement like handle:READ-ONLY has no effect,
 a statement like handle:GET-FIRST() does have effect,
 so look for OBJCOLON _not_ followed by node type "Method_param_list" */
 ASSIGN
 result = parserGetHandle()
 numResults = parserQueryCreate(theNode, qname, "OBJCOLON":U).
 DO i = 1 TO numResults:
 parserQueryGetResult(qname, i, result).
 /* from "widattr" in the tree spec:
 * (OBJCOLON . #(Array_subscript...)? #(Method_param_list...)?)+
 * First, move to the method or attribute name node - the .
 * (i.e. any) token after the OBJCOLON.
 * Then, simply check next sibling twice.
 * First time might be Array_subscript.
 */
 parserNodeNextSibling(result, result).
 IF parserNodeNextSibling(result, result) = "Method_param_list":U THEN
 LEAVE check-block.
 IF parserNodeNextSibling(result, result) = "Method_param_list":U THEN
 LEAVE check-block.
 END.

 Page 14 of 19

Progress E-Zine Issue 25

In the check made above, we are assuming that attributes do not perform actions, and methods do.
For the most part, this assumption works quite well, and it is certainly close enough for the
purpose of issuing warnings.

 /* If we got here, then the expression statement probably has no effect.
 * "Expr_statement" is a synthetic node, so it won't have a line
 * number. Instead, use the first non-synthetic node for PublishResult.
 */
 parserNodeFirstChild(theNode, result).
 DO WHILE parserGetNodeLine(result) EQ 0 :
 parserNodeFirstChild(result,result).
 END.

We’ve played a little trick here to find a node with a valid filename and line number. Some nodes
in the parser’s tree are inserted for tree structure only, and don’t represent text from any source
file. That is the case with an Expr_statement node. We just look for the first descendant node
which does represent text from an actual sourcefile.

 RUN PublishResult {&insuper} (compilationunit,
 parserGetNodeFilename(result),
 parserGetNodeLine(result),
 "Statement has no effect":T,
 rule_id).

 END. /* check-block */

Here we call Prolint’s PublishResult procedure. PublishResult is responsible for sending a
message to the active output handler. Prolint has various output handlers, and each of those is
responsible for reporting a violation found in the code. Some output handlers report out to a text
file, some report to the UI, some are geared towards putting the error messages into your
favourite editor, and yet another reports the errors to a database for later analysis.

The arguments expected by the PublishResult procedure are:

• The name of the current compile unit (the program being linted)
• The name of the source file where the violation was found (may be an include file)
• The line number within the source file where the violation was
• The error message to display
• This rule’s identifier – in this case, it is “noeffect”

The variables compileationunit and rule_id are defined and initialized via ruleparams.i.

 parserReleaseHandle(result).
 parserQueryClear(qname).

END PROCEDURE. /* InspectNode */

That’s it! We tell the parser to release a couple of resources that we’ve grabbed, and we’re done.

 Page 15 of 19

Progress E-Zine Issue 25

This rule had a few complications in it, and it actually requires more code than some of the
simpler Prolint rules. However, I hope that it was still a good example for demonstrating the basic
steps that are done in most Prolint rules:

• Include ruleparams.i
• Call searchNode with a node type to find and the name of a callback procedure
• Define the callback procedure
• The callback procedure may or may not perform further checks on the node that was

found
• For nodes that are found to have actually violated some rule, call the PublishResult

procedure

John Green: www.joanju.com, john@joanju.com
With contributions from Jurjen Dijkstra: jurjen@global-shared.com
Corrections and suggestions from Judy Hoffman Green: judy@joanju.com

John has been programming in Progress since 1989, and has been lead developer and
team leader on various ERP systems, as well as on Roundtable at Starbase. Recently he
has moved over to the C side (seaside?) in order to develop Proparse.

 Page 16 of 19

http://www.joanju.com/
mailto:john@joanju.com
mailto:jurjend@wxs.nl
mailto:judy@joanju.com

Progress E-Zine Issue 25

Letters:

Regarding the Auditing Article of Issue 24:

We implemented a very similar audit trail system a few years ago using the raw-transfer method
to a raw field. It all worked very well until we upgraded our Progress installation from 8.2 to
9.1. Then we found that the RAW data transferred with 8.2 could not be transferred out using
9.1. It worked sometimes and then would not and was very unstable. The answers from Progress
was that RAW-TRANSFER was not intended and a long term data storage format but only meant
as a means of transferring data from one place to another.

We subsequently canned the system and used a BUFFER-COMPARE method to store only the
fields that have changed in a CHAR field.

Robin Smith

Publishing Information:

Scott Auge publishes this document. I can be reached at sauge@amduus.com.

Amduus Information Works, Inc. assists in the publication of this document by providing
an internet connection and web site for redistribution:

Amduus Information Works, Inc.
1818 Briarwood
Flint, MI 48507
http://www.amduus.com

Other Progress Publications Available:

This document focuses on the programming of Progress applications. If you wish to read more
business oriented articles about Progress, be sure to see the Profile’s magazine put out by
Progress software:

http://www.progress.com/profiles/

There are other documents/links available at www.peg.com.

Products Available From Amduus:

 Page 17 of 19

mailto:sauge@amduus.com
http://www.amduus.com/
http://www.progress.com/profiles/

Progress E-Zine Issue 25

Amduus Information Works, Inc. is a Progress reseller and ASPen partner. We primarily develop
UNIX/Linux based applications for the web. We also perform integration of Progress
applications through such languages and tools as MQ Series, C, and C++.

Amduus provides support for the following applications: Blue Diamond, Denkh, Denkh HTML
Reporter, Red Arrow Portal (CMS), Survey Express and other software.

Article Submission Information:

Please submit your article in Microsoft Word format or as text. Please include a little bit
about yourself for the About the Author paragraph.

Looking for technical articles, marketing Progress articles, articles about books relevant
to programming/software industry, white papers, etc.

 Page 18 of 19

Progress E-Zine Issue 25

Order Form for Progress Open Source CD-ROM

COUPON 001A

This is an offer for the CD-ROM at lower than list savings!

This is a great way to support the E-Zine too!

Mail this form to:
Amduus Information Works, Inc.

1818 Briarwood
Flint, MI 48507

Please send ______ copies of the Open Source CD-ROM at
$25.00 per disk to:

Name __
Company __

Address __
City __

State ___________________________ Country _____________________
Zip __

Please make your checks/money orders out to: Amduus Information Works, Inc. Cash works too!
This offer only valid in the United States of America.

The CD-ROM includes (all source code included):

• Blue Diamond/IRIS – Webspeed alternatives
• Survey Express – easily create text templates of surveys and then have the program

generate the web pages automatically
• Service Express – Web based Help Desk.
• The Progress E-Zines, books on learning to program in Webspeed (PDF/Word/HTML)
• Denkh HTML Reporter – web based report writer
• CMS – a web content management system
• DB Email – Use pop3 to download emails into a Progress database
• Neural Networks – experiments in spam recognition and text message classification
• Denkh – create PDF file reports for Webspeed/UNIX CHUI!
• More!

 Page 19 of 19

	The Progress Electronic Magazine
	Publisher’s Statement:
	Coding Article: Natural Language Interfacing and Adventure Game Part 1
	
	
	
	
	
	Written by Scott Auge sauge@amduus.com

	What is an adventure game?
	Representing Rooms In The Game
	Representing where the player is in the game
	Pulling it together

	Product Article: Good News, Bad News, Good News
	Coding Article: Programming Prolint by Example: “
	Letters:
	Publishing Information:
	Other Progress Publications Available:
	Products Available From Amduus:
	Article Submission Information:
	Order Form for Progress Open Source CD-ROM
	
	
	
	Flint, MI 48507

