
Progress E-Zine Issue 8
 November 1, 2001

 Page 1 of 19

The Progress Electronic Magazine

In this issue:

Publisher’s Statement: .. 3
Coding Article: Using cookies to login and identify a web user for security purposes 4

Sample code of a web page that sets the cookie value .. 5
Sample code to differentiate a login or checking of the user .. 5
Code to login the user.. 6
To check a logged in user.. 7
Ancillary code: .. 8

MakeID2 function ... 8
GetUserCookie.p ... 9
SetUserCookie.p.. 9

Management Article: Getting a programmer up to speed on an application........................ 13
Examine Tables in the database .. 13
Read the user manuals ... 14
Read Technical Documentation/Specifications... 14
Read the code .. 15
Associate Screens to code ... 16
Associate background processes to code... 17

Contractors/Consulting Companies Available: .. 17
Community Announcements:... 17
Product Announcements: ... 18

Survey Software .. 18
Mail List Software... 18
Security SDK... 19

Publishing Information:.. 19
Article Submission Information:.. 19

Did you sign up to receive this E-Zine? Send email to sauge@amduus.com to subscribe
or fill out the forms at http://www.amduus.com/online/dev/ezine/EZineHome.html ! It’s

free! (Though donations are certainly welcome – whatever you feel is fair!)

mailto:scott_auge@yahoo.com
http://www.amduus.com/online/dev/ezine/EZineHome.html

Progress E-Zine Issue 8
 November 1, 2001

 Page 2 of 19

Though intended for users of the software tools provided by Progress Software Corporation, this document is
NOT a product of Progress Software Corporation.

Progress E-Zine Issue 8
 November 1, 2001

 Page 3 of 19

Publisher’s Statement:

Last issue’s management article on scoping progress applications gave me the idea of sharing tips
on how to get up to speed on a progress application. Hopefully people will write in with their tips
about how to get up to speed on programming that can be shared with everyone else to make
programming with Progress tools all the more productive.

Also I see there are many questions on the PEG about using cookies within web applications.
This issue examines the use of cookies to identify a user and to determine if that user should be
on the web page in question. It gives some sample code to work with to get functional with
cookies in an application right away.

I am looking for people who are interested in reselling Amduus Information Works applications.
Some are done (as if software is ever done) and some are not. Please contact me if your
interested at sauge@amduus.com. Also, if you have any Webspeed development work that you
would like to farm out – I am looking for that kind of activity also. My resume is available here:
http://www.amduus.com/Resumes/ScottAuge.html

In the future, Amduus is going to be giving away actual applications of significant functionality.
Service Express is the first one to be tried out. The idea is to see if Open Source generates
programming hours for the people out there capable of modifying it. It appears from the survey
taken that nearly 50% of the people using an Open Source application would hire the people that
wrote it for any modifications. An interesting experiment indeed and I will let you all know how
it goes.

If you have not already, please be sure to take this survey about Open Source:

Click http://www.amduus.com/online/survey/PrmPresentSurvey.html?SurveyID=aQGs91zXeI16
to take the survey. Click
http://www.amduus.com/online/survey/PrmSurveyResult.html?SurveyID=aQGs91zXeI16&Pass
Code=Yw7aVifx6h17 to see the results.

To your success,

Scott Auge
Founder, Amduus Information Works, Inc.
sauge@amduus.com

mailto:sauge@amduus.com
http://www.amduus.com/Resumes/ScottAuge.html
http://www.amduus.com/online/survey/PrmPresentSurvey.html?SurveyID=aQGs91zXeI16
http://www.amduus.com/online/survey/PrmSurveyResult.html?SurveyID=aQGs91zXeI16&PassCode=Yw7aVifx6h17
http://www.amduus.com/online/survey/PrmSurveyResult.html?SurveyID=aQGs91zXeI16&PassCode=Yw7aVifx6h17

Progress E-Zine Issue 8
 November 1, 2001

 Page 4 of 19

Coding Article: Using cookies to login and identify a web user for security purposes

Written by Scott Auge

Often there are questions about how to use a cookie to identify a user, as well what exactly is
identified of the user by the cookie.

Myth control: People often want to turn cookies off for “privacy.” If these cookies, are
turned off, then one must use hidden fields and name-value pairs in URLs to continue to
identify the user. The fact is, the data used to identify the user is merely in a different
form, instead of being in a cookie data structure, it is in a hidden field or URL data
structure. Without these values, your website cannot identify individual users.

This article will explain how to use a cookie to login in a user, and how to continue to identify
that user in subsequent web pages of your web application.

This article assumes you understand the use of FORMs and Cookies in an HTML environment.
It focuses on the Webspeed1 implementations to get information from these constructs within the
Webspeed environment.

The WebState table is used, this can be referenced in Issue Two of the Progress E-Zine. In short,
the general architecture of the pages are as shown:

Page that
prompts for

login name and
password and

sets cookie

Page that
associates

cookie to user

Page that uses
the cookie

1 Blue Diamond and many other Webspeed alternatives also use these constructs.

Progress E-Zine Issue 8
 November 1, 2001

 Page 5 of 19

Sample code of a web page that sets the cookie value

DEF VAR lCookieValue AS CHARACTER NO-UNDO.

{MakeID2.i}

/* We set the cookie value here, so that it is available in later pages. */
/* This helps reduce programmer stress. Later on in the AdminHome.html */
/* page, the cookie value is associated to a user via the WebState table.*/

PROCEDURE OUTPUT-HEADERS:

 ASSIGN lCookieValue = MakeID2(20).

 SET-COOKIE("UserTrack", lCookieValue, ?, ?, ?, ?, ?).

END. /* PROCEDURE OUTPUT-HEADERS */

Under Webspeed E4GL programming style, the use of the OUTPUT-HEADERS procedure is to
be called before any other code. This program allows output of the cookie syntax in the header of
the HTTP message before outputting the HTML. If SET-COOKIE() is called after the header of
the HTTP message, the text of the cookie will be rendered on the window of the browser, instead
of being interpreted by the browser as setting a cookie. See sga_util.i in Blue Diamond for
more information about how a Cookie is set in the HTTP Header of a HTTP message.

Generally a random string of some characters and digits is created and deposited on the user’s
browser from the page that they are accessing the web application on. I do this because the value
of the cookie is immediately available in following pages. It is on the following pages, that
accept the login name and password of the user, that will take their cookie value and associate it
to a user.

Sample code to differentiate a login or checking of the user

DEF VAR lUserID AS CHARACTER NO-UNDO.
DEF VAR lPassword AS CHARACTER NO-UNDO.

/* Determine if the user is available */

ASSIGN
lUserID = GET-VALUE("UserID")
lPassword = GET-VALUE("Password").

/* If we are coming in from the Login.html page, then the UserID will be */
/* populated, run the LoginUser procedure to get them straightened out. */

IF lUserID <> "" THEN RUN LoginUser.

/* Otherwise, they are coming in from some other page, so we need the */

Progress E-Zine Issue 8
 November 1, 2001

 Page 6 of 19

/* cookie to determine who they are and if they have any business on */
/* this page.

ELSE RUN CheckUser.

/* Render the page */
-->

The user may come into a menu page for the first time to be logged in, or from a link to the menu
page from inside the application. The above code determines if there is a NVP (Name Value
Pair) for UserID and uses that to determine if it is a login or merely a return to the page.

Code to login the user

Logging in a user determines if the user has a record recording them as available to the
application and if they have any business being on the web page. The mechanics below
determine if a pre-existing SecUser record is available for the user. I have a table Person to
identify people, and SecUser to identify people who have access to the application. This is
because a person may or may not be a user of the application. (Ie, a person could be merely a
contact for an entity in the application.) I have found that keeping data related to users of an
application in it’s own table versus part of an overall table for “people” much more flexible and
easy to understand.

PROCEDURE LoginUser:

 FIND SecUser NO-LOCK
 WHERE SecUser.Login = lUserID
 AND SecUser.Password = lPassword
 NO-ERROR.

 IF NOT AVAILABLE SecUser THEN DO:

 RUN ipRejectPage ("Sorry, cannot find your user/password combination.").
 RETURN.

 END. /* IF NOT AVAILABLE SecUser */

 /* Associate the user to the cookie */

 ASSIGN lCookieValue = GET-VALUE("UserTrack").

 RUN SetUserCookie.p (INPUT lCookieValue,
 INPUT SecUser.SecUserID).

 /* Determine if the user has any business on this page */

 RUN SecurePage.p (INPUT SecUser.SecUserID,
 INPUT "AdminHome.html",
 OUTPUT lIsOK).

 IF NOT lIsOK THEN DO:

 RUN ipRejectPage ("Sorry, your userid cannot access this page.").
 RETURN.

Progress E-Zine Issue 8
 November 1, 2001

 Page 7 of 19

 END. /* IF NOT lIsOK */

END. /* PROCEDURE LoginUser */

In short, the code looks for a pre-existing record for the userid and password. If not available,
then the user is sent to a reject page which has the proper HTML formatting to elegantly tell them
they are not allowed into the system.

If we did find them, we associate their cookie value with the user. This is done by making an
entry in the Webstate table using the cookie value as the WebState.SessionID and the data value
the unique identifier for the user. It is at this point that the user is “logged in” as we can reference
the cookie value to a SecUser record. See Issue Two of the E-Zine for more information about the
use of the WebState table and it’s other fields.

In amduus databases, each record has a unique identifier on it – sort of an embedded RowID for
the record. This is so individual records can be keyed on one field when need be. Unlike a
RowID, when a dump and load of the database is performed, the value is guaranteed to be the
same (this is why I use the field, instead of storing the ROWID of a record.)

Finally, we determine if the user has any business being on that certain page. This is done by
calling a module called SecurePage.p naming the user and naming the page the user is on. Note
this code does not determine the data the user has access to, only the page.

A very simple method is to make database entries in the SecPage table matching user to page
name. If there exists a record for the user on that page, then SecurePage.p should return a YES
answer stating they are good to go. If not, it should send a NO answer and then the reject page
routines will come up.

To check a logged in user

Checking who and if a logged in user has any business on the page is similar to the steps of
logging in a user. Instead of associating a user to a cookie, we use a cookie to find the user. This
is done by retrieving the cookie value and looking up the user in the WebState table.

If the user cannot be found, then the program will proceed to the rejection page.

If the user is found, it proceeds to the determination if the user has any business on the page.

PROCEDURE CheckUser:

 DEF VAR lSecUserID AS CHARACTER NO-UNDO.
 DEF VAR lCookieValue AS CHARACTER NO-UNDO.

Progress E-Zine Issue 8
 November 1, 2001

 Page 8 of 19

 /* Determine who the user is based on the cookie */

 ASSIGN lCookieValue = GET-VALUE("UserTrack").

 RUN GetUserCookie.p (INPUT lCookieValue,
 OUTPUT lSecUserID).

 FIND SecUser NO-LOCK
 WHERE SecUser.SecUserID = lSecUserID
 NO-ERROR.

 IF NOT AVAILABLE SecUser THEN DO:

 RUN ipRejectPage ("Sorry, your cookie is not valued correctly").
 RETURN.

 END. /* IF NOT AVAILABLE SecUser */

 /* Determine if the user has any business on this page */

 RUN SecurePage.p (INPUT SecUser.SecUserID,
 INPUT "AdminHome.html",
 OUTPUT lIsOK).

 IF NOT lIsOK THEN DO:

 RUN ipRejectPage ("Sorry, your userid cannot access this page.").
 RETURN.

 END. /* IF NOT lIsOK */

END. /* PROCEDURE CheckUser */

Ancillary code:

MakeID2 function

The MakeID2 function generates a usually unique value to be used by a program. See the Open
Source area of http://http://www.amduus.com or Issue One of the E-Zine for more on the
RandomString.p procedure.

/* MakeID.i
 *
 * Function returns a pure random string. Not guaranteed to be unique however,
 * but most likely will be.
 */

DEF VAR RCSVersionMakeSeq AS CHARACTER INIT "$Header:
/home/appl/survey/src/RCS/
MakeID2.i,v 1.1 2001/10/15 07:18:49 sauge Exp $" NO-UNDO.

FUNCTION MakeID2 RETURNS CHARACTER (INPUT pLength AS INTEGER):

 DEF VAR i AS CHARACTER NO-UNDO.

http://www.amduus.com/

Progress E-Zine Issue 8
 November 1, 2001

 Page 9 of 19

 RUN RandomString.p (INPUT pLength, OUTPUT i).

 ASSIGN i = i + STRING(ETIME).

 RETURN i.

END. /* FUNCTION MakeID2() */

GetUserCookie.p

/* GetUserCookie.p */

DEF VAR RCSVersion AS CHARACTER INIT "$Header:
/home/appl/survey/src/RCS/GetUser
Cookie.p,v 1.1 2001/10/27 00:11:04 sauge Exp sauge $" NO-UNDO.

DEF INPUT PARAMETER pSessionID AS CHARACTER NO-UNDO.
DEF OUTPUT PARAMETER pSecUserID AS CHARACTER NO-UNDO.

FIND WebState NO-LOCK
WHERE WebState.SessionID = pSessionID
 AND WebState.Category = "Login"
 AND WebState.Name = "SecUser"
NO-ERROR.

IF NOT AVAILABLE WebState THEN DO:
 ASSIGN pSecUserID = ?.
 RETURN.
END.

ASSIGN pSecUserID = WebState.Data.

SetUserCookie.p

/* SetUserCookie.p */

DEF VAR RCSVersion AS CHARACTER INIT "$Header:
/home/appl/survey/src/RCS/SetUser
Cookie.p,v 1.1 2001/10/27 00:11:04 sauge Exp sauge $" NO-UNDO.

DEF INPUT PARAMETER pSessionID AS CHARACTER NO-UNDO.
DEF INPUT PARAMETER pSecUserID AS CHARACTER NO-UNDO.

/* This will be a problem if the SessionIDs are not unique between users */
/* In effect, the user has become another user! Make sure when creating */
/* the session id, that sessionid does not already exist. */

FIND WebState NO-LOCK
WHERE WebState.SessionID = pSessionID
NO-ERROR.

IF AVAILABLE WebState THEN RETURN.

CREATE WebState.

Progress E-Zine Issue 8
 November 1, 2001

 Page 10 of 19

ASSIGN
WebState.SessionID = pSessionID
WebState.Category = "Login"
WebState.Name = "SecUser"
WebState.Data = pSecUserID.

Database tables used in this article:

===

============================= Table: SecUser ============================

 Table Flags: "f" = frozen, "s" = a SQL table

Table Dump Table Field Index Table

Name Name Flags Count Count Label

----------------------------- -------- ----- ----- ----- -------------------

SecUser secuser 6 3 SecUser

 Description: Security information for a system user

 Storage Area: N/A

============================= FIELD SUMMARY =============================

============================= Table: SecUser ============================

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags Format Initial

----- ------------------------- ----------- ----- --------------- ----------

 10 SecUserID char i x(8)

 20 PersonID char i x(8)

 30 Login char x(8)

 40 Password char x(8)

 50 SecProfileID char i x(8)

 60 Confirmed logi yes/no no

Field Name Label Column Label

------------------------------ ---------------------- ----------------------

SecUserID SecUserID SecUserID

PersonID PersonID PersonID

Login Login Login

Password Password Password

SecProfileID SecProfileID SecProfileID

Confirmed Confirmed Confirmed

Progress E-Zine Issue 8
 November 1, 2001

 Page 11 of 19

============================= INDEX SUMMARY =============================

============================= Table: SecUser ============================

Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc, - desc

Flags Index Name Cnt Field Name

----- -------------------------------- --- ---------------------------------

pu key1 1 + SecUserID

 key2 1 + PersonID

 key3 1 + SecProfileID

** Index Name: key1

 Storage Area: N/A

** Index Name: key2

 Storage Area: N/A

** Index Name: key3

 Storage Area: N/A

============================= FIELD DETAILS =============================

============================= Table: SecUser ============================

** Field Name: Confirmed

 Description: User confirmed to be who they say they are

 Help: User confirmed to be who they say they are

===

============================= Table: SecPage ============================

 Table Flags: "f" = frozen, "s" = a SQL table

Table Dump Table Field Index Table

Name Name Flags Count Count Label

----------------------------- -------- ----- ----- ----- -------------------

SecPage secpage 3 2 SecPage

 Description: Pages Users are allowed access to

 Storage Area: N/A

============================= FIELD SUMMARY =============================

============================= Table: SecPage ============================

Progress E-Zine Issue 8
 November 1, 2001

 Page 12 of 19

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags Format Initial

----- ------------------------- ----------- ----- --------------- ----------

 10 SecPageID char i x(8)

 20 PageName char i x(8)

 30 SecUserID char i x(8)

Field Name Label Column Label

------------------------------ ---------------------- ----------------------

SecPageID SecPageID SecPageID

PageName PageName PageName

SecUserID SecUserID SecUserID

============================= INDEX SUMMARY =============================

============================= Table: SecPage ============================

Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc, - desc

Flags Index Name Cnt Field Name

----- -------------------------------- --- ---------------------------------

u key1 2 + SecUserID

 + PageName

pu pukey 1 + SecPageID

** Index Name: key1

 Storage Area: N/A

** Index Name: pukey

 Storage Area: N/A

============================= FIELD DETAILS =============================

============================= Table: SecPage ============================

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

mailto:scott_auge@yahoo.com

Progress E-Zine Issue 8
 November 1, 2001

 Page 13 of 19

Management Article: Getting a programmer up to speed on an application

Written by Scott Auge sauge@amduus.com

As a software contractor, I found it a requirement to become familiar with complex applications
very quickly. Some applications had nearly half a million lines of code in them, and it is a
challenge to become functional in a short amount of time. So in order to not go insane, I came up
with some methods to “get up to speed” with what is going on.

Examine Tables in the database

The core purpose of most database oriented applications is the tables within the database.
Learning the database tables, fields, and relations will help the programmer learn what the end
result data is that the programs have available to them to work with as well as create.

The first step is finding out the databases that are available for applications to connect with.
Often there are multiple copies for development, testing, and production and knowing their names
and connection parameters are important. Hence one should become familiar with the scripts (or
icons) used to access the DB and application.

Once the DBs are known I will use the Data Dictionary to create a Progress Data Dictionary
Report of the entire database to a disk file. By using a search feature in a text editing program,
one can quickly get to the detail of a certain table. By using vi, I generally enter /Table:
Address to zip right to the Address table report within the document. I have found it much easier
to search on different items throughout the report under a text editor than to continuously use the
Data Dictionary Report over and over. Plus it is easier to cut and paste with an editor.

Having that, I begin drawing up ER diagrams. These are the most useful things for a
programmer, and sub-sets of diagrams can be drawn for certain functions or modules of the
application. An example ER diagram is below:

Progress E-Zine Issue 8
 November 1, 2001

 Page 14 of 19

Person

PersonID

FirstName

AddressID

ContactID

LastName

Contact

ContactID

EMail

Fax

Mobile

Pager

Phone

MailList

MailListID

PersonID

Name

MailListID

MailListMember

MailListMemberID

Notice that the name of the table is in blue, fields that are indexed are in yellow, and pure
attribute fields are in white.

Read the user manuals

Having a clue about what the application does is important. Time will need to be set aside to read
the manuals of the application. And one should not expect the time to become familiar with the
manuals to be any less than time than one would need to read a book (or two or three with some
applications.)

When reading the manuals, one usually does not need to become familiar with the entire
application. But one should focus on an overview of what the application is attempting to
accomplish. Learn how to set up and view default configurations and codes as these will
influence your algorithms (like including them!) The section you will need to work on as a
programmer should be paid special attention.

Get out the yellow post it notes to mark important chapters and defaults configurations. Get your
own copy of the manuals so you can write marginalia.

Read Technical Documentation/Specifications

If there are technical documentation available about the module of code you are working on,
these should be read. They usually will document sub-procedures and functions you will have
available to you when writing new functionality, as well where to look when you want to modify
the functionality of the application.

An important difference between “reading the code” and reading the specifications, is that
reading the code states exactly what the program is doing, while the technical documentation

Progress E-Zine Issue 8
 November 1, 2001

 Page 15 of 19

usually states what the program should do. These can be two very different meanings when an
application has a problem in it.

Technical documentation2 about the programs in the application can be a quick way to learn what
procedure or function does what. As an example:

FUNCTION MakeID RETURNS CHARACTER (INPUT Seq AS INTEGER):

Returns an unique string based on the Sequence number for the ID field of a table.
Example:

{MakeID.i}

…

ASSIGN Address.AddressID = MakeID(NEXT-VALUE(AddressID)).

Read the code

When one reads the code, one wants to accomplish a few things other than slogging through line
after line of source. Some of the things I do right away are “calling trees” which document how
the code calls other code. An example is as below:

Subscribe.html

conf/inird.p records/maillist/CreateMailList.p records/contact/CreateContact.p

MakeID.i:MakeID

Note that if a call is made into an include that contains an internal procedure or function, the
include file name is prefixed followed by a colon.

One also wants tools to determine how a field is used within the application. The use of the
UNIX command find combined with grep through the directory structure can be useful for this:

2 Amduus Information Works is creating a database web based requirements and documentation
application. It would be helpful to know if such a thing would be considered by the reader’s organization.

Progress E-Zine Issue 8
 November 1, 2001

 Page 16 of 19

find . –name “*” –exec grep –il “expression” {} \;

An example with results for the expression “Street1” can be found with:

$ find /appl/amduus/src -name "*" -exec grep -il "Street1" {} \; 2> /dev/null

/appl/amduus/src/records/address/ModifyAddress.p

/appl/amduus/src/records/address/CreateAddress.p

This way when messing with a field value such as Street1, one can become more familiar with
how it is used by other parts of the program as well how it might become populated.

With practice, this expression can be useful for all sorts of things. For example, when changing
something in an include file, a search of the directory structure could be made to find what other
files are influenced by that include file. Then more proper testing can be done not only on what
your intended change is, but what unintended changes might occur in other parts of the
application could be.

Become familiar with Xref files. This is a topic for a future article.

Associate Screens to code

User interfaces to the code of the application are important, and having a screen that makes the
data more human readable is useful. When one needs to make a change to the screen of an
application, one can quickly garner the complexity of the change by the screen’s calling tree.
This helps with determining the effort that might be needed, as well as other programs that could
require modification based on the modification of the original program.

With Webspeed3 applications the HTML page is a good starting point and very simple.

With CHUI/GUI4 apps one usually needs to identify which procedure renders the screen (and in
most cases, which part of the screen.) When doing so, one will want to become familiar with the
menu-ing method for the application.

Some applications merely hard code the screens into a menu bar or the like.

3 And Blue Diamond!
4 CHUI is Character User Interface, GUI is Graphical User Interface

Progress E-Zine Issue 8
 November 1, 2001

 Page 17 of 19

Other applications use a database table to identify screens, menu options, and the program that
needs to be called. Under a database driven menu-ing system, one will want to print out that data
most likely for quick reference.

Associate background processes to code

Often applications will have background processes associated with them. Since these are also
places where data can be manipulated, one will want to become familiar with them and what their
function is for. Particularly of they play a role in integrations. An addition of a field may require
changes to processes not seen by the user that funnel data around the application landscape.

About the author: Scott Auge is the founder of Amduus Information Works, Inc. He has
been programming in the Progress environment since 1994. His works have included E-
Business initiatives and focuses on web applications on UNIX platforms.
sauge@amduus.com

Contractors/Consulting Companies Available:

If you do work in the Progress world – let me know and I will be able to include you!
Price is $10.00 per listing per issue.

Analysts Express Inc.

The Reliable Source for I.T. Consulting and Recruiting
Contact: James Arnold @ 888/889-9091

02-1

Amduus Information Works, Inc.
http://www.amduus.com
scott_auge@yahoo.com sauge@amduus.com

Creation of modules and products for re-sale as well customized Internet/Intranet programming for
E-Business in the marketing/manufacturing/service and law enforcement industries.

Community Announcements:

A place to announce Progress User Groups, Open Source Exchanges, etc. No charge!

mailto:scott_auge@yahoo.com
mailto:scott_auge@yahoo.com
mailto:sauge@amduus.com

Progress E-Zine Issue 8
 November 1, 2001

 Page 18 of 19

Wonder where to find those Progress marketing articles?

http://www.progress.com/analyst/
http://www.progress.com/profiles/index.htm
http://www.progress.com/success/index.htm

Latest Progress in the News sighting!

http://www.cw360.com/article&rd=&i=&ard=107155&fv=1

Product Announcements:

Survey Software

Amduus Information Works, Inc. is creating survey software. This software can be used
on a web site to query a population of people about their views and needs. The
population could be internal to a company or external to yield a better understanding of
the marketplace.

The software ships with source code for better adaptability to your company’s application
landscape and needs. The software was developed and designed on Linux with Progress
Version 9 and Blue Diamond (Compatible with Progress Webspeed). The software can
operate on AIX, Linux, Solaris, HP-UX and UNIXWare.

Customers and resellers are welcome to contact Scott Auge at sauge@amduus.com for
more information. Street price is $2,000 per machine without Progress licenses.

The software can be rented out at 10 cents per response or $25.00 per survey (whichever
greater) per week of taking results. See
http://www.amduus.com/HTML_Manuals/RentingSurveyExpress.html for information
about how to set up a survey with us.

Mail List Software

The publishing of this E-Zine has created the need to create some software that can
handle the creation of mailing lists, web pages to subscribe and unsubscribe as well as a
command line to distribute this file. This software is available for $50.00 per site. The
User Guide is available at http://www.amduus.com/Manuals/mls.doc . Purchase before

http://www.progress.com/analyst/
http://www.progress.com/profiles/index.htm
http://www.progress.com/success/index.htm
http://www.cw360.com/article&rd=&i=&ard=107155&fv=1
mailto:sauge@amduus.com
http://www.amduus.com/HTML_Manuals/RentingSurveyExpress.html
http://www.amduus.com/Manuals/mls.doc

Progress E-Zine Issue 8
 November 1, 2001

 Page 19 of 19

October 15th and get a free update that will have a subscription verification feature and a
list server.

Security SDK

The SDK works on E4GL source applications on Webspeed, Blue Diamond, or other
Webspeed alternatives that use E4GL coding. Just one more thing brewing up at
Amduus Information Works!

Publishing Information:

Scott Auge publishes this document. I can be reached at scott_auge@yahoo.com.

Currently there are over 400 subscribers and companies that receive this mailing! This
mailing is not sent unsolicited, so it is not SPAM.

Amduus Information Works, Inc. assists in the publication of this document:

Amduus Information Works, Inc.
925 South Wolfe Road #26
Sunnyvale, CA 94086-8843
408-730-4588
http://www.amduus.com

Article Submission Information:

Please submit your article in Microsoft Word format or as text. Please include a little bit
about yourself for the About the Author paragraph.

Looking for technical articles, marketing Progress articles, articles about books relevant
to programming/software industry, white papers, etc.

mailto:scott_auge@yahoo.com

	The Progress Electronic Magazine
	Publisher’s Statement:
	Coding Article: Using cookies to login and identify a web user for security purposes
	
	
	
	
	
	Written by Scott Auge

	Sample code of a web page that sets the cookie value
	Sample code to differentiate a login or checking of the user
	Code to login the user
	To check a logged in user
	Ancillary code:
	MakeID2 function
	GetUserCookie.p
	SetUserCookie.p

	Management Article: Getting a programmer up to speed on an application
	
	
	
	
	
	Written by Scott Auge sauge@amduus.com

	Examine Tables in the database
	Read the user manuals
	Read Technical Documentation/Specifications
	Read the code
	Associate Screens to code
	Associate background processes to code

	Contractors/Consulting Companies Available:
	
	
	
	
	Amduus Information Works, Inc.

	Community Announcements:
	Product Announcements:
	Survey Software
	Mail List Software
	Security SDK

	Publishing Information:
	Article Submission Information:

