
Progress E-Zine Issue 23

The Progress Electronic Magazine

In this issue:

Publisher’s Statement: .. 2
Coding Article: Generic Record Change Logging Framework .. 3

Requirements... 3
Pre-update Process .. 4
Transaction Scoping Issue... 5
The Gory Details of the Post-update Process .. 5
Conclusion... 12

Publishing Information:.. 13
Other Progress Publications Available: .. 13
Products Available From Amduus: ... 13
Article Submission Information:.. 13
Order Form for Progress Open Source CD-ROM ... 14

This document may be freely shared with others without modification.

Though intended for users of the software tools provided by Progress Software Corporation, this document is
NOT a product of Progress Software Corporation.

© Amduus Information Works, Inc. 2002

 Page 1 of 14

Progress E-Zine Issue 23

Publisher’s Statement:

In this issue, we have an article by Peter Bisset from Queensland, Australia about using dynamic

programming techniques to create auditing trails for record
changes. One of my pet peeves in many systems, is that they will
have a few fields for who created a record, and who modified the
record at what date and time – but once the record is changed
again – the previous changes are lost! I find it a lot more useful to
have a transactional log of changes that have occurred within the
system over time. Especially in inventory and financial

applications. One of the things Peter doesn’t include, is the name of the program that did the
change – my little contribution of should be’s for the article!

Reach over 700 programmers
and companies.

Your ad could be here!

Advertise in the E-Zine for
$10.00 per issue!

To your success,
Scott Auge
Founder, Amduus Information Works, Inc.
sauge@amduus.com

 Page 2 of 14

mailto:sauge@amduus.com

Progress E-Zine Issue 23

Coding Article: Generic Record Change Logging Framework

Written by Peter Bisset pbisset@emergency.qld.gov.au

In our applications, all changes made by a user as part of a procedure that allows record updates
are logged in a separate table. We record the before and after values in a character field along
with other information that allows identification of who made the change, when, what part of the
application, etc.

Prior to the introduction of dynamic
queries the way we identified the
changes was by comparing an
exported text dump of the record
before and after the update. This has
worked perfectly well for many, many
years, but has required one procedure
for each dB in which we log the
change. It also had the overhead of OS
calls to write and read text files. We wanted to remove these things in our conversion to the web.

Analysts Express, Inc.

Webspeed Training and progress programming.

Call James Arnold at
888-889-9091

or
jarnold@mylinuxisp.com

This article will present an outline of the technique we now employ in the hope that it might assist
others with similar needs or prompt further development from the Progress community. It will not
explain the usage of the various Progress constructs used – refer to the Progress documentation
for this.

Requirements

• You must be running a client that supports dynamic queries (we are on 9.1C and 3.1C).

The database must support the raw datatype and be a version accessible by the client.

• Your dB will need to have a table added with the following specification:

Table name: mraw
Field name: raw-field
Field type: raw

This table is used to hold pre-update copies of records.

• Include the pre-update code in your procedures
• Include the post-update code in your procedures

 Page 3 of 14

Progress E-Zine Issue 23

Figure 1 gives an outline of how to use this mechanism.

pre-update copy of
record to mraw

run evlog

run evlog

if record not changed
then perform dB
record update

perform data entry via
web form or enable

Maintenance Procedure

evlog.p

log-type = "check"

log-type = "upd"

matched = yes/no

Figure 1

Pre-update Process

In your update procedure you need to include the following lines BEFORE any changes are
made to the record in question:

def var mrawid as rowid no-undo.

create mraw.
raw-transfer <table-name> to mraw.raw-data.
assign mrawid = rowid(mraw).

 Page 4 of 14

Progress E-Zine Issue 23

This code simply copies the whole <table-name> record to the raw field raw-field in an mraw
record. The variable mrawid is used to pass the rowid of the mraw record to the event logging
procedure. Obviously, you need to substitute <table-name> for the name of the table being
modified.

Transaction Scoping Issue

How you use this code depends on how you scope your transactions. If you have a small
transaction scope it should be possible to include the pre-update, update and post-update
processes in a single transaction If the transaction scope would be unacceptably large then you
need to verify that the record copied to mraw has not been changed by another user after the data
was displayed on the screen. This is particularly relevant in a web environment. To get around
this we call our event logging procedure with an option (log-type = “check”) to request
confirmation that the mraw copy and the dB record are the same. If they are then we go ahead and
process the update request, otherwise the user is advised that someone else has altered the record
and that they need to start again/refresh/whatever.

By creating the mraw record in a separate transaction you have the possibility of it being
orphaned should the procedure terminate unexpectedly. You should implement some sort of clean
up process to removes these records at a later stage. How you do this depends on your operating
environment and whether you can easily identify orphans. For example, a nightly shutdown for a
backup is the ideal time to delete all mraw records since there cannot be any updates in progress.

The Gory Details of the Post-update Process

The event logging procedure takes at least four input parameters and should return a value, either
as an output parameter or as a return-value
indicating the result. Amduus Information Works, Inc.

http://www.amduus.com
scott_auge@yahoo.com sauge@amduus.com

Creation of modules and products for re-sale
as well customized Internet/Intranet programming
for E-Business in the marketing/manufacturing/
service and law enforcement industries.

We pass in many more items, such as user name, a
code to identify the type of event causing the
change, the name of the table in which to record
the change and fields to identify the record
modified. Flavour to taste.

• Parameters

/* string to indicate type of procedure call – update, check, etc. */

 Page 5 of 14

Progress E-Zine Issue 23

def input parameter log-type as char no-undo.

/* The name of the table that is being logged */
def input parameter tname as char no-undo.

/* The row id of the record after the changes have been logged */
def input parameter record-id as rowid no-undo.

/* The row id of the mraw record that contains a snap shot of the record
 * taken when the update was started i.e. before any of the changes were
 * committed
 */
def input parameter mraw-id as rowid no-undo.

/* The return value of the compare */
def output parameter matched as log no-undo.

• Internal Variables

/* A handle to mraw.raw-data so that we can retrieve the data */
def var mraw-field as handle no-undo.

/* A handle to the mraw table */
def var mraw-handle as widget-handle no-undo.

/* Handle to the updated record */
def var new-buffer as widget-handle no-undo.

/* Dynamic query to find updated record */
def var new-query as widget-handle no-undo.

/* Temp table to hold old record */
def var ttable as handle no-undo.

/* Hold the name of the first field */
def var fname as char no-undo.

/* A counter */
def var i as i no-undo.

/*
 * Variables used to step through the fields in the two tables so
that
 * they can be compared.
 */
def var fh-new as widget-handle extent 300 no-undo.
def var fh-old as widget-handle extent 300 no-undo.

def var vlabel as char no-undo.

 Page 6 of 14

Progress E-Zine Issue 23

def var vold as char no-undo.
def var vnew as char no-undo.
def var arrayi as int no-undo.

• Steps

The first step is to create a dynamic query to the table passed as a parameter in tname and to
create the temp table ttable like the table tname.

/* Create a dynamic buffer to the table */
create buffer new-buffer for table tname.

/* Create and open a dynamic query into the table */
create query new-query.

/* Tell the dynamic query which table to use */
new-query:set-buffers(new-buffer).

/* Create the temp table to hold the old record */
create temp-table ttable.

/* Make the temp table have the same fields as the record we are
checking */
ttable:create-like(new-buffer).
ttable:temp-table-prepare("ttable").

/* Create a buffer to the temp table */
tt-handle = ttable:default-buffer-handle.

There is a bug in all current versions of Progress that prevents raw-transfer working on a
temp table that has no index defined. We have such tables in our applications used as system
parameter tables with one record. If you don’t have this situation then you can skip the next
section. If you have the problem you will receive the following run time errors when using raw-
transfer (the field number and table name will vary depending on your definitions):

SYSTEM ERROR: Cannot read field 3 from record, not enough fields.
(450)
SYSTEM ERROR: Failed to extract field 3 from ttable record (table
2) with recid 129. (3191)
SYSTEM ERROR: bffld: nxtfld: scan past last field. (16)

As with more than a few Progress error messages, the message doesn’t help you easily identify
the reason. The only hint is the table name.

If you do have this situation, then you will need to do one of the following: 1) add an index to the
affected tables; 2) use the workaround as described; 3) wait for Progress to issue a service pack.

 Page 7 of 14

Progress E-Zine Issue 23

We are on 9.1C, so no fix will be forthcoming, and 9.1D is not guaranteed to be fixed since there
is a relatively simple workaround and it is not viewed as a high priority bug.

The workaround is to simply create an index on a field in the temp table. While it is easy enough
to find a field using the facilities in the language for manipulating dynamic queries and make an
index on it, you need to ensure that the field you find is not an array - they cannot be indexed.
The simplest solution is to make a new index on the first available field. It doesn’t matter if one
already exists – it is simpler to just create one.

/*
 * To get around the 3191 bug - you must have an index on a temp-
table
 * to use raw transfer -we have to do the following
 */

assign fname = "".

/* Get the name of the first field that is not an array */
do i = 1 to tt-handle:num-fields:

 mraw-field = tt-handle:buffer-field(1).
 if mraw-field:extent > 0
 then next.

 fname = mraw-field:name.
 leave.
end.

/* If all the fields in the table are arrays then we cannot audit
log this record */

if fname = ""
then do:
 assign matched = true.
 message "All fields in the table:" tname "are arrays. Audit
logging not possible!".
 delete mraw.
 mraw-handle:buffer-release().
 return.
end.

/* Clean up */
ttable:clear().

/* Start again this time adding the index */
/* Create the temp table to hold the old record */
create temp-table ttable.

 Page 8 of 14

Progress E-Zine Issue 23

/* Make the temp table have the same fields as the record we are
checking */
ttable:create-like(new-buffer).

/* Add the index to the field we found – this needs to be unique
*/
ttable:add-new-index("XXXX1", false, false).
ttable:add-index-field("XXXX1", fname).

/* Reprepare the temp-table for use */
ttable:temp-table-prepare("ttable").

/* Create a buffer to the temp table */
tt-handle = ttable:default-buffer-handle.

/*
 * End of 3191 bug changes
 */

One point to note is that you must do create the temp-table twice because you can only do a
prepare once the schema changes have finished. However, you can only look at the schema
once it has been prepared. So, the first one gives us a schema we can look at to find a valid field.
You must then delete it and recreate it so we can add the index, then do the prepare.

Now we have to retrieve the modified record using the rowid passed in with the parameter
record-id.

/* Tell the query about the for each we need to use. NB this
must be simple */
new-query:query-prepare("for each " + new-buffer:name + " no-
lock").

/* Open the query */
new-query:query-open.

/* Reposition the query to the required row and retrieve the
resulting row */
new-buffer:find-by-rowid(record-id).

Now retrieve the pre-update copy stored in the mraw table using the row id passed in with the
parameter mraw-id and place it into the raw variable mraw-field.

find first mraw
 where rowid(mraw) = mraw-id
 exclusive-lock no-error no-wait.

 Page 9 of 14

Progress E-Zine Issue 23

/* Get a handle to the table */
mraw-handle = buffer mraw:handle.

/* Retrieve the raw data */
mraw-field = mraw-handle:buffer-field(1).

/* Put the raw data into the tempory table table */
tt-handle:raw-transfer(false, mraw-field) no-error.

See if any fields were changed using the buffer-compare method. This shows how we check if
the record has been changed after it was copied to mraw. If a value of “check” is passed in the
parameter log-type or if this is an update and there weren’t any changes then clean up and
return. The logical variable matched is an output parameter.

matched = tt-handle:buffer-compare(new-buffer).

if log-type = "check" /* We just need to be sure that nothing has
changed */
or (matched and log-type = "upd") /* No changes to log */
then do:
 mraw-handle:buffer-release().
 new-buffer:buffer-release().
 new-query:query-close().
 delete object new-query.
 delete mraw.
 return.
end.

Now step through each field and compare it to the pre-update version.

The two array variables fh-new and fh-old are used to step through each field in a record and
so need to be as large as the largest table in your database. 300 well and truly covers the largest
table in our applications. We have not investigated defining this at run time. If a field is an array
you have to iterate through each element.

/* Compare each of the fields to see what has changed */
do i = 1 to new-buffer:num-fields:
 fh-new[i] = new-buffer:buffer-field(i).
 fh-old[i] = tt-handle:buffer-field(i).

if fh-new[i]:extent > 0 /* an array */
 then do arrayi = 1 to fh-new[i]:extent:

/* If nothing has changed then skip it */
if fh-new[i]:buffer-value(arrayi) = fh-old[i]:buffer-

value(arrayi)
then next.

 Page 10 of 14

Progress E-Zine Issue 23

 /* The label of the field */
 vlabel = trim(fh-new[i]:label) + ": ".

 /* The old value */
 vold = trim(fh-old[i]:buffer-value(arrayi)).

 /* The new value */
 vnew = trim(fh-new[i]:buffer-value(arrayi)).

 /*

 * Create the audit log here – we record the values
in vold,

 * vnew and vlabel so that the audit log shows before
and

 * after values.
 * Use your own code here, depending on needs and

design,
 */

 end.
 else do: /* not an array */

/* If nothing has changed then skip it */
if fh-new[i]:buffer-value = fh-old[i]:buffer-value
then next.

 /* The label of the field */

 vlabel = trim(fh-new[i]:label) + ": ".

 /* The old value */
 vold = trim(fh-old[i]:buffer-value).

 /* The new value */

 vnew = trim(fh-new[i]:buffer-value).

 /*

 * Create the audit log here – we record the values
in vold,

 * vnew and vlabel so that the audit log shows before
and

 * after values.
 * Use the same code as above.
 */

 end.

end.

 Page 11 of 14

Progress E-Zine Issue 23

Finally, delete all objects before the end of the procedure is reached. Apart from deleting the
mraw record, the rest is optional since Progress will remove the data structures once the
procedure closes.

/* Clean up */
delete mraw.
mraw-handle:buffer-release().
new-buffer:buffer-release().
new-query:query-close().
delete object new-query.

Conclusion

We have found this process works extremely well with little, if any, measurable performance
impact.

I hope that I have reproduced everything correctly. Any errors or omissions, probably in the area
of missing variable definitions, are mine and are due solely to preparing the document for
publication. The important code is all shown and it should not be difficult to implement this in
your application. If you have any questions or comments then feel free to email me.

The hard work in figuring all this out (not for the faint of heart) was done by our contract
programmers:

Kylie Leonard - Adaptive Enterprises (kleonard@adaptive-enterprises.com.au)
Wendy Keating - r-code design (wkeating@ozemail.com.au)

About the author: Peter Bisset is a systems analyst/administrator/programmer with the
Department of Emergency Services in Queensland, Australia. He has been using
Progress for more years than he cares to remember (14 at last count) and still thinks it is
a pleasure to work with.

 Page 12 of 14

Progress E-Zine Issue 23

Publishing Information:

Scott Auge publishes this document. I can be reached at sauge@amduus.com.

Amduus Information Works, Inc. assists in the publication of this document by providing
an internet connection and web site for redistribution:

Amduus Information Works, Inc.
1818 Briarwood
Flint, MI 48507
http://www.amduus.com

Other Progress Publications Available:

This document focuses on the programming of Progress applications. If you wish to read more
business oriented articles about Progress, be sure to see the Profile’s magazine put out by
Progress software:

http://www.progress.com/profiles/

There are other documents/links available at www.peg.com.

Products Available From Amduus:

Amduus Information Works, Inc. is a Progress reseller and ASPen partner. We primarily develop
UNIX/Linux based applications for the web. We also perform integration of Progress
applications through such languages and tools as MQ Series, C, and C++.

Amduus provides support for the following applications: Blue Diamond, Denkh, Denkh HTML
Reporter, Red Arrow Portal (CMS), Survey Express and other software.

Article Submission Information:

Please submit your article in Microsoft Word format or as text. Please include a little bit
about yourself for the About the Author paragraph.

Looking for technical articles, marketing Progress articles, articles about books relevant
to programming/software industry, white papers, etc.

 Page 13 of 14

mailto:sauge@amduus.com
http://www.amduus.com/
http://www.progress.com/profiles/

Progress E-Zine Issue 23

Order Form for Progress Open Source CD-ROM

COUPON 001A

This is an offer for the CD-ROM at lower than list savings!

This is a great way to support the E-Zine too!

Mail this form to:
Amduus Information Works, Inc.

1818 Briarwood
Flint, MI 48507

Please send ______ copies of the Open Source CD-ROM at
$25.00 per disk to:

Name __
Company __

Address __
City __

State ___________________________ Country _____________________
Zip __

Please make your checks/money orders out to: Amduus Information Works, Inc. Cash works too!
This offer only valid in the United States of America.

The CD-ROM includes (all source code included):

• Blue Diamond/IRIS – Webspeed alternatives
• Survey Express – easily create text templates of surveys and then have the program

generate the web pages automatically
• Service Express – Web based Help Desk.
• The Progress E-Zines, books on learning to program in Webspeed (PDF/Word/HTML)
• Denkh HTML Reporter – web based report writer
• CMS – a web content management system
• DB Email – Use pop3 to download emails into a Progress database
• Neural Networks – experiments in spam recognition and text message classification
• Denkh – create PDF file reports for Webspeed/UNIX CHUI!
• More!

 Page 14 of 14

	The Progress Electronic Magazine
	Publisher’s Statement:
	Coding Article: Generic Record Change Logging Framework
	
	
	
	
	
	Written by Peter Bisset pbisset@emergency.qld.gov.au

	Requirements
	Pre-update Process
	Transaction Scoping Issue
	The Gory Details of the Post-update Process
	Conclusion

	Publishing Information:
	Other Progress Publications Available:
	Products Available From Amduus:
	Article Submission Information:
	Order Form for Progress Open Source CD-ROM
	
	
	
	Flint, MI 48507

