Object Oriented
Programming
with
Progress 4GL

Scott Auge

Definition off OOP

= A type of programming in which programmers. define not only: the
data type of a data structure, but also the types: of operations (
functions) that can be applied to the data structure. In this way,
the data structure becomes an opject that includes both data and
functions. In addition, programmers: can create relationships
between one object and another. For example, objects can /inherit
characteristics from other objects.

= One of the principal advantages ofi object-oriented programming
techniques over procedural programming technigues is that they
enable programmers to create modules that do net need to be
changed when a new. type of object isiadded. A programmer can
simply: create a new object that inherits many: of: its features from
existingl ebjects. This makes object-oriented programs, easier to
modify.

Example ofi an object

= | efs examine what would be taken to
make an object representing a door.

TThe Door Object

= \We know that a door has certain states:
= Open
= Closed
= | ocked
= Unlocked

TThe Door Object

= [hese states would be stored in an
attribute of the object, a variable of the
object that Is part ofi the object.

= |s|_ocked = {Yes, No}
= |sSOpen ='{Yes, Noj

TThe Door Object

= \We can do certain things with; the door,
certain actions.

TThe Door Object

= These actions are called methods. These
are the things one can do with the door
object.
= | ock()
= UnLock()
= Open()
= Close()

TThe Door Object

= Sometimes what we want to happen: to the
door needs to send some feedback. For
example, trying to open() an already
opened door. We create some attributes
fior that.

= cErrorMisg = “Human friendly description”
= [ErrerCoede = {Z}

TThe Door Object

= Recap of variables associated with the
object.
= |[ErrorCode
= cErrorlVisg
= |s| ocked
= |SOpen

TThe Door Object

= Recap of the methods available
= GetError()
= | ocki()
= Unlock()
= Open()
= Close()

TThe Door Object

= \What it we want to make two door
objects? Do we need to make two sets of
variaples?

Implementing ani ebject

= An object in the 4GL needs to be defined
In a procedure file.

= [he object's attributes would be local
variables, to the file.

= [he object's methods would be internal
procedures to the file.

= [0 make an “instance” of the object, one
wouldlrun the file “persistently.”

Implementing ani ebject

= Object oriented files should begin with
obj_ so that programmers know. off the
bat the file is object oriented.

= obj_log.p Is an object oriented log file
management system.

Implementing ani ebject

= [he logging object Is stored in a file
= obj_leg.p
= [he log management object has some
attributes associated to It:
= ['he file name ofi the file It manages
= [The error messaging subsystem.
= A variable to determine If the file open

Implementing ani ebject

= [he logging object has some methods available

fo It:

= GetError()

= GetlogFileName()
Init()
InitAppend()
Destroy()
DeWirtLogFile()
DoErasel.ogFile()
DoCopyl_ogFile()
DoCloseFile()

Implementing ani ebject

= A constructor is a method that is run on
creation of an object. In more OO
languages, this Is automatically: done
pased on the arguments provided.

Implementing ani ebject

= [he log management object has some “private
methods available toit. Private methods are
methods that should only be called by the object
it’s self:

= [hese should be pre-pended with prv: so programmers
know! they are private. Note the use of the PRIVATE
keyword on the procedure definition.

= prvAssignError()

= Helps to ease management of the errors from other
procedures.

Implementing ani ebject

= | ocal variables to the object (attributes),
will need their own Set*() and Get*()
methods because the 4GL does not allow

external programs to access them
directly.

Creating an instance of the object

= Now that an object is defined, how do we
use It?

Create an instance of ani object

= Objects need to be referred through Progress 4GL
handles. The code below says we are expecting to work
with two objects:

/* Object instance handles */

DEEINE VARTABILE hobjlog Systemloghile AS HANDLE NO-UNDO.
DEEINE VARTABILE hobjlog ProgrammerlLogiile ASH HANDLE NO-UNDO.

/* C++ Version */

ObjiLog *hobjlog Systemlhoghiles;
ObjLog *hobjlog Programmerloghkile;

Create an instance of ani object.

= Once we have handles to manage our
Instances, we go ahead and make

Instances:

/% Create twe instances of the Logging obiject */

RUNI obj 1og.p PERSISTENT SET hobjlog SystemlLogkile.
RUNI obj| 1og.p PERSISTENT SET hobjlog Programmerloghkile.

/* C++ Version */

Not needed!

Create an instance of ani object

= Polymorphism is weak in the language (er,
actually kind off non-existent.) You will need to
choose the constructor manually.

= The 4GL does not let us call the constructor
automatically like some languages do: (C++ for
example.) We need to call those separately:

/% Call their comnstructors */

RUN InitAppend IN hobjlog SystemLogEile ("/tmp/systemlogfile. txt').
RUN InitAppend IN hobjlog Programmerlogiile ("/tmp/programmerlogfile. txt™) .

/7% Gt Versiom */
Holbjlog Programmerioghile = new ObjLog ("/tmpy/progremmerlogiile. £t

Using an instance of an object

= Once aniobject has been allocated and
it's constructor has been called, one can
begin working Iit's methods:

/* Call into their "activity" methods */

RUN DoWrtlLogEile IN hobjlog SystemLogkile ("This should be in system log file.").

RUN DoWrtlLogEile IN hobjlog ProgrammerLogkile ("This should be in programmer log
file.™) .

/* C++ Version */

hobjlog SystemLogkile->DoWrtLogkile ("This should be in system log file.");
hobjlog ProgrammerLoghkile->DoWrtLogkile ("This should be in programmer log Lfile.");

Using an object instance

= One ofi the good things about objects Is
that they can know about themselves.
IHere Is a method that returns the log file
the object Is writing| to:

/* Display the log files these objects are using */

RUNI GetLoglkileName IN hobjleg Systemloghile (OULPUL cl) .
RUN GetlLogkileName IN hobjleg Programmerloghile (OUTPUT c2) .

disp ¢l c2.
/* C++ Version */

cout << hobjlog Systemlogkile=>GetloghileName () 7

Destroying an object nstance

= \When you: are finished with an object, you
should call it’'s “destructor.” Note you
need to delete it's persistence handle.

/* Call their destructors */

RUN Destroy IN hobjlog SystemlLogkile.
DELETE WIDGET hobjlog Systemloghile.

RUN Destroy 1IN hobjlog Programmerlogiile.
DELETE WIDGET hobjlog Programmerlogiile.

/* C++ Version */

dedete hobjlog Programmerloghiicy

Passingl Objects around

= One can pass objects to other routines: by
passing their handles to them.

= [Handles can be converted into strings

with the S

RING() function, and returned

to a handle type with the WIDGE -
HANDLE() function.

Inheritance

There are two ways for inheritance to work.

3. Use super-procedures.

4. Create an instance of the base object
Inherited and call into: it directly.

Each has It's pro's and con's.

Inherit by calls

= | ets explore number 2. It is easier to
understand.

Inherit by calls

The Good

Pretty easy to determine the
flow ofi control.

Pretty easy to manage
different instances of parent
objects because they are
scoped to the child object by
handle and managed by
constructer andl destructor
calls.

Pretty easy to write “over-ride”
method. Just have your child
do what it does, with/without
runnNing the parent’'s method.

The Bad

IT the parent has it’s
parameters changed, all
children need to be found and
have their parameters
changed.

Inherit by calls

= |n your constructors, you create parent
object(s) Instance(s) of the child object,
then call it's constructors in your child's
constructor:

DEFINE VARIABLE hobj Parent AS HANDLE NO-UNDO. /* Parent object’s handle */
/* Calling your init (constructor) will automatically instance a parent */

PROCEDURE Init:

RUN ol base.p PERSISTENT SET hobj Parent. /% Create dnstance */
RUN Init IN holbj Parent. /* Call it’s constructor */

END.

Inherit by calls

= Destroying parent objects of child object.
Ini your child’s destructor, be sure to call
the destructors of inherited objects ana
clean up memory.

DEFINE VARIABLE hobj Parent AS HANDLE NO-UNDO.

/* Calling your Destroy (destructor) will autematically delete instance a parent */
/* Call other instances if imheriting more than one object. “

PROCEDURE, Destroy:

RUN Destroy IN hobj Parent.
DELETE OBJECT hobj Parent.

END.

Inherit by calls

= Using parent objects of child ebject. You
will need to write a “wrapper” method that
passes arguments from your child's
procedure into the parent’s procedure.

DEFINE VARIABLE hobj Parent AS HANDLE NO-UNDO.
/* Call into parent object directly. No over-riding code i1s included. */
PROCEDURE, DoThis:

RUN DoThils: IN: hobg Parent.

END.

Inherit by calls

= [his s an example of ever-riding the
method ofi a parent object in the child
object. Simply don't call'the parent's
method (unless you need to!)

/* Call into parent object directly. This is an over-ride of an existing */

/* parent function. * /

PROCEDURE DoThat :

/* Your own code. Call parent object for what ever or not call the parent. */

END.

Inherit by SUper-procedures

The Good

No need for “wrapper”
procedures. Parent methods
automatically made available.

You can inherit functions.

Multiple “vertical™ object
iInheritance works, great!

The Bad

One needs to be careful how
Supers are stacked. Less control
over which parent object’s method
Is called i two parents with the
same method. No “switcharoo's”
determining order ofi parent

methods called.

Doesn’t handle “horizontal®
objects very well, that 1s-an object
of two base objects with the same
method. NMethodA might need
ONe super-procedure stack order
while MethedB' needs another.

Gottal start ups alll these parents
and know you need to start em

Ufo)

Inherit by Super Procedures

= \/ery similar to the inherit by call method.
m See the progress Expert Series book:

OPERIEATE
Pevelopment: Progress 4GIt IHandeeoks; 8
Sadd

Questions?

Corrections and contributions

= [im Townsend, www.tttechno.com
= Colin Stutley, ws.com.au

[Pessible way, te autemate
destructors

/* ... Main Block */
ON CLOSE OF THIS—-PROCEDURE RUN ipDispose IN THIS—-PROCEDURE .

IF p OptionalParameter = 2 THEN RUN ipConstructor IN THIS-PROCEDURE () .
ELSE RUN ipConstructor2 IN THIS-PROCEDURE (p OptionalParameter) .
RETURN .

Then in any invoking procedure
RUN xyz.r PERSISTENT SET vObjectHandle (?2) .

APPLY "CLOSE":U TO vObjectHandle. /* defacto garbage collection */

