
Object Oriented Object Oriented
ProgrammingProgramming

with with
Progress 4GLProgress 4GL

Scott AugeScott Auge

Definition of OOPDefinition of OOP
 A type of A type of programmingprogramming in which in which programmersprogrammers define not only the define not only the

data typedata type of a of a data structuredata structure, but also the types of operations (, but also the types of operations (
functionsfunctions) that can be applied to the data structure. In this way,) that can be applied to the data structure. In this way,
the data structure becomes an the data structure becomes an objectobject that includes both that includes both datadata and and
functions. In addition, programmers can create relationships functions. In addition, programmers can create relationships
between one object and another. For example, objects can between one object and another. For example, objects can inheritinherit
characteristics from other objects. characteristics from other objects.

 One of the principal advantages of object-oriented programming One of the principal advantages of object-oriented programming
techniques over procedural programming techniques is that they techniques over procedural programming techniques is that they
enable programmers to create enable programmers to create modulesmodules that do not need to be that do not need to be
changed when a new type of object is added. A programmer can changed when a new type of object is added. A programmer can
simply create a new object that inherits many of its simply create a new object that inherits many of its featuresfeatures from from
existing objects. This makes object-oriented programs easier to existing objects. This makes object-oriented programs easier to
modify. modify.

Example of an objectExample of an object

 Lets examine what would be taken to Lets examine what would be taken to
make an object representing a door.make an object representing a door.

The Door ObjectThe Door Object

 We know that a door has certain states:We know that a door has certain states:
 OpenOpen
 ClosedClosed
 LockedLocked
 UnlockedUnlocked

The Door ObjectThe Door Object

 These states would be stored in an These states would be stored in an
attribute of the object, a variable of the attribute of the object, a variable of the
object that is part of the object.object that is part of the object.
 IsLocked = {Yes, No}IsLocked = {Yes, No}
 IsOpen = {Yes, No}IsOpen = {Yes, No}

The Door ObjectThe Door Object

 We can do certain things with the door, We can do certain things with the door,
certain actions.certain actions.

The Door ObjectThe Door Object

 These actions are called methods. These These actions are called methods. These
are the things one can do with the door are the things one can do with the door
object.object.
 Lock()Lock()
 UnLock()UnLock()
 Open()Open()
 Close()Close()

The Door ObjectThe Door Object

 Sometimes what we want to happen to the Sometimes what we want to happen to the
door needs to send some feedback. For door needs to send some feedback. For
example, trying to open() an already example, trying to open() an already
opened door. We create some attributes opened door. We create some attributes
for that.for that.
 cErrorMsg = “Human friendly description”cErrorMsg = “Human friendly description”
 iErrorCode = {Z}iErrorCode = {Z}

The Door ObjectThe Door Object

 Recap of variables associated with the Recap of variables associated with the
object.object.
 iErrorCodeiErrorCode
 cErrorMsgcErrorMsg
 IsLockedIsLocked
 IsOpenIsOpen

The Door ObjectThe Door Object

 Recap of the methods availableRecap of the methods available
 GetError()GetError()
 Lock()Lock()
 Unlock()Unlock()
 Open()Open()
 Close()Close()

The Door ObjectThe Door Object

 What if we want to make two door What if we want to make two door
objects? Do we need to make two sets of objects? Do we need to make two sets of
variables?variables?
 NO! An object has all it’s variables pre-defined NO! An object has all it’s variables pre-defined

and scoped only to that object. All we need to and scoped only to that object. All we need to
do is make another “instance” of the object.do is make another “instance” of the object.

Implementing an objectImplementing an object

 An object in the 4GL needs to be defined An object in the 4GL needs to be defined
in a procedure file.in a procedure file.

 The object’s attributes would be local The object’s attributes would be local
variables to the file.variables to the file.

 The object’s methods would be internal The object’s methods would be internal
procedures to the file.procedures to the file.

 To make an “instance” of the object, one To make an “instance” of the object, one
would run the file “persistently.”would run the file “persistently.”

Implementing an objectImplementing an object

 Object oriented files should begin with Object oriented files should begin with
obj_ so that programmers know off the obj_ so that programmers know off the
bat the file is object oriented.bat the file is object oriented.
 obj_log.p is an object oriented log file obj_log.p is an object oriented log file

management system.management system.

Implementing an objectImplementing an object

 The logging object is stored in a fileThe logging object is stored in a file
 obj_log.pobj_log.p

 The log management object has some The log management object has some
attributes associated to it:attributes associated to it:
 The file name of the file it managesThe file name of the file it manages
 The error messaging subsystem.The error messaging subsystem.
 A variable to determine if the file openA variable to determine if the file open

Implementing an objectImplementing an object

 The logging object has some methods available The logging object has some methods available
to it:to it:
 GetError()GetError()
 GetLogFileName()GetLogFileName()
 Init() Init() [A “constructor”][A “constructor”]
 InitAppend() InitAppend() [A “constructor”][A “constructor”]
 Destroy() Destroy() [A “destructor”][A “destructor”]
 DoWrtLogFile()DoWrtLogFile()
 DoEraseLogFile()DoEraseLogFile()
 DoCopyLogFile()DoCopyLogFile()
 DoCloseFile()DoCloseFile()

Implementing an objectImplementing an object

 A constructor is a method that is run on A constructor is a method that is run on
creation of an object. In more OO creation of an object. In more OO
languages, this is automatically done languages, this is automatically done
based on the arguments provided.based on the arguments provided.

Implementing an objectImplementing an object

 The log management object has some “private” The log management object has some “private”
methods available to it. Private methods are methods available to it. Private methods are
methods that should only be called by the object methods that should only be called by the object
it’s self:it’s self:
 These should be pre-pended with prv so programmers These should be pre-pended with prv so programmers

know they are private. Note the use of the PRIVATE know they are private. Note the use of the PRIVATE
keyword on the procedure definition.keyword on the procedure definition.

 prvAssignError()prvAssignError()
 Helps to ease management of the errors from other Helps to ease management of the errors from other

procedures.procedures.

Implementing an objectImplementing an object

 Local variables to the object (attributes), Local variables to the object (attributes),
will need their own Set*() and Get*() will need their own Set*() and Get*()
methods because the 4GL does not allow methods because the 4GL does not allow
external programs to access them external programs to access them
directly.directly.

Creating an instance of the objectCreating an instance of the object

 Now that an object is defined, how do we Now that an object is defined, how do we
use it?use it?

Create an instance of an objectCreate an instance of an object
 Objects need to be referred through Progress 4GL Objects need to be referred through Progress 4GL

handles. The code below says we are expecting to work handles. The code below says we are expecting to work
with two objects:with two objects:

/* Object instance handles *//* Object instance handles */

DEFINE VARIABLE hobjlog_SystemLogFile AS HANDLE NO-UNDO.DEFINE VARIABLE hobjlog_SystemLogFile AS HANDLE NO-UNDO.
DEFINE VARIABLE hobjlog_ProgrammerLogFile AS HANDLE NO-UNDO.DEFINE VARIABLE hobjlog_ProgrammerLogFile AS HANDLE NO-UNDO.

/* C++ Version *//* C++ Version */

ObjLog *hobjlog_SystemLogFileObjLog *hobjlog_SystemLogFilex;x;
ObjLog *hobjlog_ProgrammerLogFileObjLog *hobjlog_ProgrammerLogFile;;

Create an instance of an object.Create an instance of an object.

 Once we have handles to manage our Once we have handles to manage our
instances, we go ahead and make instances, we go ahead and make
instances:instances:

/* Create two instances of the Logging object *//* Create two instances of the Logging object */

RUN obj_log.p PERSISTENT SET hobjlog_SystemLogFile.RUN obj_log.p PERSISTENT SET hobjlog_SystemLogFile.
RUN obj_log.p PERSISTENT SET hobjlog_ProgrammerLogFile.RUN obj_log.p PERSISTENT SET hobjlog_ProgrammerLogFile.

/* C++ Version *//* C++ Version */
Not needed!Not needed!

Create an instance of an objectCreate an instance of an object

 Polymorphism is weak in the language (er, Polymorphism is weak in the language (er,
actually kind of non-existent.) You will need to actually kind of non-existent.) You will need to
choose the constructor manually.choose the constructor manually.

 The 4GL does not let us call the constructor The 4GL does not let us call the constructor
automatically like some languages do (C++ for automatically like some languages do (C++ for
example.) We need to call those separately:example.) We need to call those separately:

/* Call their constructors *//* Call their constructors */

RUN InitAppend IN hobjlog_SystemLogFile ("/tmp/systemlogfile.txt").RUN InitAppend IN hobjlog_SystemLogFile ("/tmp/systemlogfile.txt").
RUN InitAppend IN hobjlog_ProgrammerLogFile ("/tmp/programmerlogfile.txt").RUN InitAppend IN hobjlog_ProgrammerLogFile ("/tmp/programmerlogfile.txt").

/* C++ Version *//* C++ Version */
Hobjlog_ProgrammerLogFile = new ObjLog ("/tmp/programmerlogfile.txt");Hobjlog_ProgrammerLogFile = new ObjLog ("/tmp/programmerlogfile.txt");

Using an instance of an objectUsing an instance of an object

 Once an object has been allocated and Once an object has been allocated and
it’s constructor has been called, one can it’s constructor has been called, one can
begin working it’s methods:begin working it’s methods:

/* Call into their "activity" methods *//* Call into their "activity" methods */

RUN DoWrtLogFile IN hobjlog_SystemLogFile ("This should be in system log file.").RUN DoWrtLogFile IN hobjlog_SystemLogFile ("This should be in system log file.").
RUN DoWrtLogFile IN hobjlog_ProgrammerLogFile ("This should be in programmer log RUN DoWrtLogFile IN hobjlog_ProgrammerLogFile ("This should be in programmer log

file.").file.").

/* C++ Version *//* C++ Version */

hobjlog_SystemLogFile->DoWrtLogFile("This should be in system log file.");hobjlog_SystemLogFile->DoWrtLogFile("This should be in system log file.");
hobjlog_ProgrammerLogFile->DoWrtLogFile("This should be in programmer log file.");hobjlog_ProgrammerLogFile->DoWrtLogFile("This should be in programmer log file.");

Using an object instanceUsing an object instance

 One of the good things about objects is One of the good things about objects is
that they can know about themselves. that they can know about themselves.
Here is a method that returns the log file Here is a method that returns the log file
the object is writing to:the object is writing to:

/* Display the log files these objects are using *//* Display the log files these objects are using */

RUN GetLogFileName IN hobjlog_SystemLogFile (OUTPUT c1).RUN GetLogFileName IN hobjlog_SystemLogFile (OUTPUT c1).
RUN GetLogFileName IN hobjlog_ProgrammerLogFile (OUTPUT c2).RUN GetLogFileName IN hobjlog_ProgrammerLogFile (OUTPUT c2).

disp c1 c2.disp c1 c2.

/* C++ Version *//* C++ Version */

cout << hobjlog_SystemLogFile->GetLogFileName();cout << hobjlog_SystemLogFile->GetLogFileName();

Destroying an object instanceDestroying an object instance

 When you are finished with an object, you When you are finished with an object, you
should call it’s “destructor.” Note you should call it’s “destructor.” Note you
need to delete it’s persistence handle.need to delete it’s persistence handle.

/* Call their destructors *//* Call their destructors */

RUN Destroy IN hobjlog_SystemLogFile.RUN Destroy IN hobjlog_SystemLogFile.
DELETE WIDGET hobjlog_SystemLogFile.DELETE WIDGET hobjlog_SystemLogFile.

RUN Destroy IN hobjlog_ProgrammerLogFile.RUN Destroy IN hobjlog_ProgrammerLogFile.
DELETE WIDGET hobjlog_ProgrammerLogFile.DELETE WIDGET hobjlog_ProgrammerLogFile.

/* C++ Version *//* C++ Version */

delete hobjlog_ProgrammerLogFile;delete hobjlog_ProgrammerLogFile;

Passing Objects aroundPassing Objects around

 One can pass objects to other routines by One can pass objects to other routines by
passing their handles to them.passing their handles to them.

 Handles can be converted into strings Handles can be converted into strings
with the STRING() function, and returned with the STRING() function, and returned
to a handle type with the WIDGET-to a handle type with the WIDGET-
HANDLE() function.HANDLE() function.

InheritanceInheritance

There are two ways for inheritance to work.There are two ways for inheritance to work.

3.3. Use super-procedures.Use super-procedures.
4.4. Create an instance of the base object Create an instance of the base object

inherited and call into it directly.inherited and call into it directly.

Each has it’s pro’s and con’s.Each has it’s pro’s and con’s.

Inherit by callsInherit by calls

 Lets explore number 2. It is easier to Lets explore number 2. It is easier to
understand.understand.

Inherit by callsInherit by calls
 The GoodThe Good
 Pretty easy to determine the Pretty easy to determine the

flow of control.flow of control.
 Pretty easy to manage Pretty easy to manage

different instances of parent different instances of parent
objects because they are objects because they are
scoped to the child object by scoped to the child object by
handle and managed by handle and managed by
constructor and destructor constructor and destructor
calls.calls.

 Pretty easy to write “over-ride” Pretty easy to write “over-ride”
method. Just have your child method. Just have your child
do what it does, with/without do what it does, with/without
running the parent’s method.running the parent’s method.

 The BadThe Bad
 If the parent has it’s If the parent has it’s

parameters changed, all parameters changed, all
children need to be found and children need to be found and
have their parameters have their parameters
changed.changed.

Inherit by callsInherit by calls

 In your constructors, you create parent In your constructors, you create parent
object(s) instance(s) of the child object, object(s) instance(s) of the child object,
then call it’s constructors in your child’s then call it’s constructors in your child’s
constructor:constructor:

DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO. /* Parent object’s handle */DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO. /* Parent object’s handle */

/* Calling your init (constructor) will automatically instance a parent *//* Calling your init (constructor) will automatically instance a parent */

PROCEDURE Init:PROCEDURE Init:

 RUN obj_base.p PERSISTENT SET hobj_Parent. /* Create instance */RUN obj_base.p PERSISTENT SET hobj_Parent. /* Create instance */
 RUN Init IN hobj_Parent. /* Call it’s constructor */RUN Init IN hobj_Parent. /* Call it’s constructor */

END.END.

Inherit by callsInherit by calls

 Destroying parent objects of child object. Destroying parent objects of child object.
In your child’s destructor, be sure to call In your child’s destructor, be sure to call
the destructors of inherited objects and the destructors of inherited objects and
clean up memory.clean up memory.

DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO.DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO.

/* Calling your Destroy (destructor) will automatically delete instance a parent *//* Calling your Destroy (destructor) will automatically delete instance a parent */
/* Call other instances if inheriting more than one object. *//* Call other instances if inheriting more than one object. */

PROCEDURE Destroy:PROCEDURE Destroy:

 RUN Destroy IN hobj_Parent.RUN Destroy IN hobj_Parent.
 DELETE OBJECT hobj_Parent.DELETE OBJECT hobj_Parent.

END.END.

Inherit by callsInherit by calls

 Using parent objects of child object. You Using parent objects of child object. You
will need to write a “wrapper” method that will need to write a “wrapper” method that
passes arguments from your child’s passes arguments from your child’s
procedure into the parent’s procedure.procedure into the parent’s procedure.

DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO.DEFINE VARIABLE hobj_Parent AS HANDLE NO-UNDO.

/* Call into parent object directly. No over-riding code is included. *//* Call into parent object directly. No over-riding code is included. */

PROCEDURE DoThis:PROCEDURE DoThis:

 RUN DoThis IN hobj_Parent.RUN DoThis IN hobj_Parent.

END.END.

Inherit by callsInherit by calls

 This is an example of over-riding the This is an example of over-riding the
method of a parent object in the child method of a parent object in the child
object. Simply don’t call the parent’s object. Simply don’t call the parent’s
method (unless you need to!)method (unless you need to!)

/* Call into parent object directly. This is an over-ride of an existing *//* Call into parent object directly. This is an over-ride of an existing */
/* parent function. *//* parent function. */

PROCEDURE DoThat:PROCEDURE DoThat:

 /* Your own code. Call parent object for what ever or not call the parent. *//* Your own code. Call parent object for what ever or not call the parent. */

END.END.

Inherit by Super-proceduresInherit by Super-procedures
 The GoodThe Good
 No need for “wrapper” No need for “wrapper”

procedures. Parent methods procedures. Parent methods
automatically made available.automatically made available.

 You can inherit functions.You can inherit functions.
 Multiple “vertical” object Multiple “vertical” object

inheritance works great!inheritance works great!

 The BadThe Bad
 One needs to be careful how One needs to be careful how

Supers are stacked. Less control Supers are stacked. Less control
over which parent object’s method over which parent object’s method
is called if two parents with the is called if two parents with the
same method. No “switcharoo’s” same method. No “switcharoo’s”
determining order of parent determining order of parent
methods called.methods called.

 Doesn’t handle “horizontal” Doesn’t handle “horizontal”
objects very well, that is an object objects very well, that is an object
of two base objects with the same of two base objects with the same
method. MethodA might need method. MethodA might need
one super-procedure stack order one super-procedure stack order
while MethodB needs another.while MethodB needs another.

 Gotta start up all those parents Gotta start up all those parents
and know you need to start em and know you need to start em
up.up.

Inherit by Super ProceduresInherit by Super Procedures

 Very similar to the inherit by call method.Very similar to the inherit by call method.
 See the progress Expert Series book:See the progress Expert Series book:

OpenEdgeOpenEdge
 Development: Progress 4GL Handbook, by John Development: Progress 4GL Handbook, by John
SaddSadd

Questions?Questions?

Corrections and contributionsCorrections and contributions

 Tim Townsend, www.tttechno.com Tim Townsend, www.tttechno.com
 Colin Stutley, ws.com.auColin Stutley, ws.com.au

Possible way to automate Possible way to automate
destructorsdestructors

/* ... Main Block *//* ... Main Block */
 ON CLOSE OF THIS-PROCEDURE RUN ipDispose IN THIS-PROCEDURE. ON CLOSE OF THIS-PROCEDURE RUN ipDispose IN THIS-PROCEDURE.

IF p_OptionalParameter = ? THEN RUN ipConstructor IN THIS-PROCEDURE(). IF p_OptionalParameter = ? THEN RUN ipConstructor IN THIS-PROCEDURE().
ELSE RUN ipConstructor2 IN THIS-PROCEDURE(p_OptionalParameter). ELSE RUN ipConstructor2 IN THIS-PROCEDURE(p_OptionalParameter).
RETURN. RETURN.

Then in any invoking procedure ... Then in any invoking procedure ...

RUN xyz.r PERSISTENT SET vObjectHandle(?). ... RUN xyz.r PERSISTENT SET vObjectHandle(?). ...

... APPLY "CLOSE":U TO vObjectHandle. /* defacto garbage collection */ ... APPLY "CLOSE":U TO vObjectHandle. /* defacto garbage collection */

