
Neural Network for recognizing message context

Scott Auge
Amduus Information Works, Inc.
sauge@amduus.com

Version 1.3

Theory of operation:

(If you want to treat the neural net as a black box, go to the bottom of this page to see the
procedures to call. Remember – train first, use after training.)

There are many messages written in human language that may need to be classified. An example
of this might be email messages containing unsolicited commercial messages (i.e., Spam.) Other
less obvious examples may be emails written from customers of a large corporation: is the email
meant for finance? The web administrator? The sales group? The service group?

When we examine a message, we see that certain words are used in combination to express the
thoughts of the writer. A common approach used to recognize the meaning of the message is to
use word matching to determine if the message is what it is. What is missing from this approach
is the context of the message. If one sets up a rule saying “if the word ‘sale’ is in the message
then the message is for sales,” it can be wrong simply because the word sale might be used in the
context of the sender wishing to tell about a sale, or it could be asking for a sale.

These kinds of word existance rules soon become complicated and really do not sort out
messages very well. This is not a problem that is easily solved with Boolean/predicate calculus
logic.

The neural network operates on collections of words, versus a set of rules on words. Certain
types of messages will always have a collection of words that need to be used to express the
thought and intent of the writer. But writers generally do not use the same words in the same
order to express the idea. Messages are very fuzzy in their use of different expressions to result
in the same output.

How the NN (Neural Net) represents this is very different from the Predicate calculus method of
determining the classification of a message. The NN is trained with inputs from messages that
have been classified as the type of classification the NN is to learn. This is called training data.

This data and algorithms associated with the NN will create an NN that should recognize this type
of data in the future.

mailto:sauge@amduus.com

Another aspect of the neural network is that it does not give a definitive answer that the message
is what it thinks it is. But it will give a number that when large represents it thinks it likely to be
the classification it has learned, and when low represents it thinks it likely not to be a
classification it has learned.

One will need to create a threshold value where a message is considered a member of the
classification, and when it is not. If the message is a member of the classification, it should be
turned into training data and feed back into the NN.

Here is a simple explanation of how the NN works in this implementation.

Each word is sent as an input to the neural network. Each word of training data creates a neuron.
Associated with this neuron is a numeric weight that describes the frequency of the word used in
the training data. Then the collection of words is examined at whole to determine if a high
frequency of words used in the message have been presented in the training data.

here is an simple example:

Here is three sets of training data:

a f h u i
k u f o p
r t u k l

This could be an abstracted view of spam messages.

After training, the NN will have neurons that associate the frequency of the words. In the above
training data, it would end up with this:

Na = 1
Nf = 2
Nh = 1
Nu = 2
Ni = 1
Nk = 2
No = 1
Np = 1
Nr = 1
Nt = 1
Nl = 1

Now a message is sent into the NN to determine if it is of the classification found in the training
data. If enough training data is presented, it should be able to determine associatively if the
message is part of that set.

f u k o w

is the message to be classified…

We see that the elements (words) f u k o are common in the training set. A message containing
these words are very likely to be of the training set. And the NN would return an output of a
large number.

The message

q j h t x

is not part of the training set, and so the NN should return a low number.

This approach uses a feed-forward neural network based on the perceptron with a Log-Sigmoid
transfer rule. The ∑ is slightly modified for those vectors that are not present. Under that

circumstance, the value is subtracted by the default weight of a neuron (best represents a missing
neuron I suppose.)

One aspect of this approach that differs from most neural network implantations is the automatic
creation of neurons in the first layer. Once created, the network will use these neurons for
additional learning about messages presented to it.

Neuron representation:

The neurons are represented in a table called Neuron. It is composed of the following fields:

NeuronID – a unique identifier for the neuron record

Layer – for multi-level networks, this field represents which layer the neuron is a member of

Weight – Weight of the neuron learning

Bias – Bias of the neuron response

Data – Data that the neuron knows about

Name – the table may contain multiple NN’s. This is to differentiate between them.

Teaching the NN:

An input of words are presented to the net. It performs the following:

1. Pull a word out of the message.

2. Does the neuron for this word exist? If not, create it. Else find it.

3. Use the learning rule to adjust the weight of the neuron.

4. Go to step 1.

The learning rule:

Nw = Nw + t

where t = 1 + n where 0 < n < 1

The larger n, the more hyper the learning, the lower, the slower the learning.

Actuating Bias:

Some words are very common to both the message to be classified and the message outside that
classification.

The bias can be trained with messages outside the classification the NN is to recognize, but
should not create neurons for inputs not common to both message types.

The Bias should be a negative number in these conditions.

The Rule is

Bias = if Bias > 0 ! abs(Bias) * (1 + t) * -1
 else Bias = 1

where t = 1 + n where 0 < n < 1

The transfer rule:

The Log-Sigmoid rule is used in this NN. It can take plus to minus infinity and squash it to 1 to
0. The rule is defined as:

ne
a −+

=
1

1

Use of the function would be:

a = f(n) where n = w + b

and

w = Weight
b = Bias

Tuning the Neural Network:

In the default.i file there are tunable parameters for the network.

&GLOBAL-DEFINE DFLTWEIGHT 0.5
&GLOBAL-DEFINE DFLTBIAS 0.0
&GLOBAL-DEFINE DFLTLAYER "1"
&GLOBAL-DEFINE DFLTTRAIN 1.2
&GLOBAL-DEFINE DFLTSETBIAS -0.4
&GLOBAL-DEFINE DFLTTRAINBIAS 0.25

DFLTWEIGHT
DFLTTRAIN

For large messages, these should be set low. There will be plenty of material for the NN to
digest. Remember DFTLTRAIN > 1 must always be true.

If the messages are short, not containing many words, one will want to keep the weights about
where they are at.

The following routines make the NN a black box for programmers who just want to use a NN
and not interested in understanding the theory.

Calling the NN:

RUN UseNN.p (INPUT Message, INPUT Name, OUTPUT IsClassification, OUTPUT
TrxFunction)

CHARACTER Message – Message to check if it is part of the classification NN learned
CHARACTER Name – Name of the NN
LOGICAL IsClassification – YES/NO of it the message is part of the classification

DECIMAL TrxFunction – Neural Net’s real answer

Training the NN:

RUN TrainNN.p (INPUT Message, INPUT Name)

CHARACTER Message – Message that is part of the classification for the NN to learn
CHARACTER Name – Name of the NN

Setting Bias:

RUN SetBias (INPUT Message, INPUT Name)

CHARACTER Message – Message that is part of the classification for the NN to learn
CHARACTER Name – Name of the NN

Clearing a Neural Net:

RUN ForgetNN (INPUT Name)

CHARACTER NAME – Name of the neural net to blow away

	Neural Network for recognizing message context

