
XML Processing With Webspeed

Scott Augé

First Edition

Amduus Information Works, Inc.
http://www.amduus.com

XML Processing with Webspeed

Copyright © 2012 by Scott Augé
All rights reserved.

Printed in the United States of America.

Published By:

Amduus Information Works, Inc.
1818 Briarwood, Flint, MI 48507
http://www.amduus.com

Printing History:
August 2012: First Edition

While every precaution was taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Table of Contents
Introduction.. 1

Assumptions Of The Reader... 1
Can I Use This For SOAP?... 1
Environment.. 1
Code Package.. 2

Configuration Of A Broker.. 3
Introductory XML Page... 4
Sending XML To The Page..6
Documentation For Your XML RPC Users... 10
Multiple Versions... 11

Introduction
Often Progress Software Corporation's Webspeed is associated with HTML pages to and from a

browser.

It is also possible to use Webspeed to write XML documents to and from the broker for your
own XML API into your application. This allows one to mix languages, operating systems, and
tools with your Progress based application, using the XML as an interface.

Like with HTML pages, one can make this state based, stateless based, or via a cookie in
stateless to track who can and cannot work with the application.

Another benefit is that if security is needed, it will happen on your web server, such as HTTPS.

Assumptions Of The Reader

It is assumed the reader is familiar with E4GL (embedded 4GL) markups and the use of the
Webspeed tools. No attempt is made in this document to teach Webspeed programming – only how
to program some simple XML pages with Webspeed.

The Progress Programming Documentation set will be useful, in particular:

• Working With XML

• ABL Reference

These programming reference documents can be downloaded from the Progress web site
www.progress.com for the version of Progress you have.

It is also assumed that one knows about XML. If not, another resource for learning about XML
can be found in many books or the web site:

• http://www.w3schools.com/xml/

Can I Use This For SOAP?

There are two answers to this – yes and no. Yes in that you will need to do a lot of the markup
yourself, where as using the adapter provided by Progress Software can take care of much of the
work. It is recommended that if you are using SOAP, you should use the Internet Adapter tools for
your application. With this tool, one pretty much writes the ABL code that will provide the service
and one then uses the tools to make all the XML for you. See http://amduus.com/cms/?q=node/51
“Creating Web Services with the Web Service Adapter” for more information on this.

However, if you are rolling your own protocol (often used with web pages, XML RPC, or
other web service architecture), then this is an option.

Environment

This document and software is written with tools from the Linux Fedora Project Release 15 and

Page 1 of 15

http://amduus.com/cms/?q=node/51
http://www.w3schools.com/xml/
http://www.progress.com/

Progress Software's Release 10.2b of their OpenEdge software.

The environment is actually a virtual machine on an Apple OS X laptop via Parallels VM
software, however that should not matter where ever the Linux OS is installed. (Simply being
complete!) You should also be able to use this software without change on MS Windows also.

To send XML to the web page, an add-on to Firefox is used called Poster. This can be inserted
into Firefox from https://addons.mozilla.org/en-US/firefox/addon/poster/. (Note the Mac version
and the Windows versions may appear slightly different.)

With these tools, you should have a bare bones development environment for sending and
receiving XML documents to the broker.

Code Package

This document is part of a package that includes the code mentioned through out. It does not
include the Progress software required to run the code – that you will need to contact Progress
Software Corporation for.

Hopefully, this code can be a template for learning and writing your XML based application
interface.

If you have only this document, you can contact sauge@amduus.com to receive the code or
download it from http://amduus.com.

Page 2 of 15

http://amduus.com/
mailto:sauge@amduus.com
https://addons.mozilla.org/en-US/firefox/addon/poster/

Configuration Of A Broker
The following is an example configuration of a broker for Webspeed. Note that the broker does

not interact with a database as this is for learning and computed values can be used. (It also makes
it more environment independent.)

This configuration can be made to the $DLC/properties/ubroker.properties file or the
administration tool found at http://localhost:9090 can be used. As the ubroker.properties file
options can change between releases, it is recommended to use the fathom configuration tool
provided.

[UBroker.WS.test]
appserviceNameList=test
brokerLogFile=/tmp/test.broker.log
controllingNameServer=NS1
environment=test
keyAlias=default_server
mqBrokerLogFile=$WRKDIR/test.mqbroker.log
mqServerLogFile=$WRKDIR/test.mqserver.log
portNumber=20000
srvrLogFile=$WRKDIR/test.server.log
uuid=11d1def534ea1be0:57135312:1353d2a3939:-7efe
workDir=/home/sauge/Documents/Appl/Test/src

Note you will probably need to make changes to match your operating system layout. This is for
reference only.

Once this is done, you will need to start the broker named “test” (or whatever you named it) in
order to reach it.

Page 3 of 15

http://localhost:9090/

Introductory XML Page

The first XML Page will be a simple call with no input XML to get the server's time and date.

Once you have your broker set up and running, place this file into the PROPATH with the name
t1.html. Compile the file and then use a simple call from a web browser to the page. (Since we
are not sending a document yet, we do not need to use Poster yet.)

<!--WSS

/**/
/* */
/* ________ */
/* ()_______) */
/* \:::::::\ Make your mark on open source, let people know */
/* \:::::::\ what you can do, profit on reputation. */
/* @:::::::/ */
/* ~~~~~~~ */
/* -- */
/* Scott Auge sauge@amduus.com scott_auge@yahoo.com */
/* Amduus Information Works, Inc. */
/* http://www.amduus.com */
/* */
/* Initial development */
/* */
/* -- */
/* */
/**/

/*
 * Template for XML page on Progress Webspeed 10.2b
 * This is a simple XML page that shows the server time and date.
 */

procedure output-headers:

 output-content-type ("text/xml":U).

end. /* procedure */

-->
<?xml version="1.0" encoding="UTF-8" ?>
<output>
 <time>`string (time, "hh:mm:ss am")`</time>
 <date>`string(today)`</date>
</output>

When running the program, the following XML is returned:

<?xml version="1.0" encoding="UTF-8" ?>

Page 4 of 15

<output>
 <time>11:44:35 pm</time>
 <date>18/08/12</date>
</output>

With Firefox, one can see the following returned and rendered (note the time has changed):

A great deal of the magic is with the procedure output-headers. This is run in e4gl pages first
due to the include file added by workshop (see a Save File As from the workshop to save it as a .w
to see the changes it makes “behind the scenes.”) Within this is the output-content-type()
function, which uses an HTTP Header to show this is an XML document.

The next bit of magic is the XML version tag. This is used by parsers to determine what to do.

Following that is your own XML markup which you will need to document for your user's to
comprehend and create calls with. This is simply done with markup as one would an HTML page,
only instead of using HTML tags, one would use the XML tags you define.

Page 5 of 15

Sending XML To The Page
Of course one will want to send data to the page. In an XML environment, one does so by

posting XML to the page. To help us do this, we use a Firefox add-in called Poster that allows us
to simply edit values that might be automatically generated by an application on the other side.
This is a nice little tool for quickly checking the interface is working.

First lets take a look at the program in action so it is easier to understand what we are attempting
to accomplish:

We send this on it's way with a POST (Note, Get will not work!) Our t2.html program will

Page 6 of 15

return the sum of the two numbers!

Here we try to send it as a GET, and receive an error because there is no XML file:

Page 7 of 15

Here we have the source code. Like before, we have our output-headers procedure with the
output-content-type function.

While the Progress virtual machine has a SAX and other XML parser, it also has a neat tool that
allows one to easily push values from XML into a temp-table. Hence we use the temp-table
AddValues to store this information. You will need to name this carefully, because it is required in
the XML markup you will share with others using your system. Many people take badly named
XML tags as an example of someone who doesn't know what they are doing.

Next we show some simply error checking – web-context:is-xml will tell us if we got an
XML document or not. If not, this is an example of how to pass along the error to the calling
system and halt the program from executing (aka, use a return statement.)

Progress' ABL has a neat little trick where one can read the XML document into the temp-table

Page 8 of 15

via a read-xml() method on that object. There are many options for this method and one should
read the documentation to understand what they mean and do.

Next we simply find the first AddValues record so it is available for the E4GL markup.

Finally, we use E4GL markup to output the value just like we would an HTML page with the
back tic (`), only this time, it's in the XML document! Hopefully this is all pretty straight forward.

<!--WSS

/**/
/* */
/* ________ */
/* ()_______) */
/* \:::::::\ Make your mark on open source, let people know */
/* \:::::::\ what you can do, profit on reputation. */
/* @:::::::/ */
/* ~~~~~~~ */
/* -- */
/* Scott Auge sauge@amduus.com scott_auge@yahoo.com */
/* Amduus Information Works, Inc. */
/* http://www.amduus.com */
/* */
/* Initial development */
/* */
/* -- */
/* */
/**/

/*
 * Template for XML page on Progress Webspeed 10.2b
 * This is a simple XML page that will add two numbers together.
 */

procedure output-headers:

 output-content-type ("text/xml":U).

end. /* procedure */

define temp-table AddValues
 field A as integer
 field B as integer.

define variable Success as logical no-undo.

/* If this is not an XML page, then return an error. */

if not web-context:is-xml then do:
-->
<error>
 <errorno>1</errorno>
 <errormsg>Sorry, this is an XML RPC page. You need to read the document... to

Page 9 of 15

understand calls to it.</errormsg>
</error>
<!--WSS
 return.
end. /* if not XML */

/* We can get the handle to the XML document from our web context and start
parsing from there. */
/* Note the XML is small in this, so we will simply do it in memory.
*/

Success = temp-table AddValues:read-xml("handle", web-context,
"empty", ?, ?, ?, ?).

if not Success then do:
-->
<error>
 <errorno>2</errorno>
 <errormsg>XML Read not successful!</errormsg>
</error>
<!--WSS
return.
end. /* if not successful */

find first AddValues no-lock.
-->
<?xml version="1.0" encoding="UTF-8" ?>
<output>
 <result>`AddValues.A + AddValues.B`</result>
</output>
<!--WSS

/* Test Data

<?xml version="1.0"?>
<AddValues xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <AddValuesRow>
 <A>12
 5
 </AddValuesRow>
</AddValues>

*/
-->

Documentation For Your XML RPC Users
Unlike SOAP, which can output a WSDL that can be read and understood by developers, using

raw XML will require detailed programmer documentation so people will have a clue how to
interact with your system.

Page 10 of 15

It is recommended to have a web page available that can be used to publish this document or
wiki detailing what pages are available and what they do, as well arguments into the page and out
of the page.

Multiple Versions
Often one will have multiple versions. Internally this isn't that important, however if one breaks

the software for outside users – they get a little irritated. One will want to have beta versions
available for testing by callers to your interface so they can implement once your system is go.

Often I will name the version by the cgi program. For example, in this document it is test –
however one may want to include a version number on it as well mark it beta or void for the world
to try out. For example:

• workorder201200312beta as a name for a beta to a work order system of the build
201200312.

• workorder201200312test much like above, however this is a test environment, and
callers need to worry about actual (billable) activity on part of your company to handle a
response. This is pretty much a way for the caller to try out their programs to your
interfaces, however your interface is believed to be working properly.

• workorder201200312prod would have prod marking this is production, and if a caller
interacts with this interface, they should expect billing associated with what is asked of your
company.

Page 11 of 15

	Introduction
	Assumptions Of The Reader
	Can I Use This For SOAP?
	Environment
	Code Package

	Configuration Of A Broker
	Introductory XML Page
	Sending XML To The Page
	Documentation For Your XML RPC Users
	Multiple Versions

